首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study. The mutants have been characterized by absorption spectroscopy and hydrogen peroxide reactivity at pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1 ferrocytochrome c (C102T) as substrate at pH 7.5. Many of the charge-reversal mutations cause detectable changes in the absorption spectrum of the enzyme reflecting increased amounts of hexacoordinate heme compared to wild-type CcP. The increase in hexacoordinate heme in the mutant enzymes correlates with an increase in H 2O 2-inactive enzyme. The maximum velocity of the mutants decreases with increasing hexacoordination of the heme group. Steady-state velocity studies indicate that 5 of the 46 mutations (R31E, D34K, D37K, E118K, and E290K) cause large increases in the Michaelis constant indicating a reduced affinity for cytochrome c. Four of the mutations occur within the cytochrome c binding site identified in the crystal structure of the 1:1 complex of yeast cytochrome c and CcP [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] while the fifth mutation site lies outside, but near, the crystallographic site. These data support the hypothesis that the CcP has a single, catalytically active cytochrome c binding domain, that observed in the crystal structures of the cytochrome c/CcP complex.  相似文献   

2.
Although the hydrophobic interactions are considered as the main contributors to the protein stability, not much examples of protein stabilization by rational increasing of this type of interactions still can be found in literature. This is partly due to the lack of proper theoretical "measure" of hydrophobic interactions and their changes upon mutations. In the present paper the molecular hydrophobicity potential approach is used to assess how the changes in type and the strength of inter-residue contacts upon single amino acid mutations are correlated with the changes in thermodynamic stability of T4 lysozyme and barnase mutants, and which factors affect these correlations. Mutations changing unfavorable hydrophilic-to-hydrophobic contacts into favorable hydrophobic were found to enhance the thermodynamic stability in more than 81 % of cases, if these mutations do not create steric bumps and do not involve proline residues and hydrogen-bonded side-chains. Mutations increasing hydrophobic contributions (according to molecular hydrophobicity potential formalism) lead to increase of thermodynamic stability in more than 94% of cases for certain type of mutations (i.e., mutations not involving charged residues, Pro and residues with side-chain hydrogen bonds, when these mutations do not introduce steric bumps and do not involve strongly exposed residues and residues situated at helix N- and C-cap positions). For this type of mutations the correlation was found between the change in hydrophobic contributions of mutated residues deltaCphob and thermodynamic parameters deltaTm (change in melting temperature) and deltadeltaG (change in free energy of unfolding). Although the correlation coefficients were larger if the experimental structures of mutants were used for the calculations (correlation coefficients r(exp) deltaC,deltaT = .85 and r(exp) deltaC,deltadeltaG = 0.87) than if the modeled structures were used instead (r(mod) deltaC,deltaT = 0.74 and r(mod)deltaC,deltadeltaG = 0.76), the modelled structures of mutants in the vast majority of cases can be used for qualitative predictition of the protein stabilization. Basing on the analysis of mutations increasing hydrophobic contributions in T4 lysozyme the substitution matrix was derived, which can be used to decide which new residue should be put instead the old one to increase the stability of protein. The estimation shows that the number of potential mutation sites for enhancement of hydrophobic interactions in T4 lysozyme is quite large, and only approximately 10 per cent of them were studied thus far. Basing on the current analysis of T4 lysozyme and barnase mutations the algorithm for increasing of protein stability via increasing of hydrophobic interactions for the proteins with known spatial structure is proposed.  相似文献   

3.
The energetics of cavity formation in proteins is evaluated with two different approaches and results are analyzed and compared to experimental data. In the first approach, free energy of cavity formation is extracted by RMS fitting from the distribution of numbers of cavities, N, with different volumes, Vcav, in 80 high-resolution protein structures. It is assumed that the distribution of number of cavities according to their volume follows the Boltzmann law, N(Vcav) = exp [(-a.Vcav-b)/kT], or its simplified form. Specific energy cost of cavity formation, a, extracted by RMS fitting from these distributions is compared to a values extracted from experimental free energies of cavity formation in T4 lysozyme fitted to similar expressions. It is found that fitting of both sets of data leads to similar magnitudes and uncertainties in the calculated free energy values. It is shown that Boltzmann-like distribution of cavities can be derived for a simple model of an equilibrium interconversion between mutants in an extracellular system. We, however, suggest that a partitioning into cavity-dependent and cavity-independent terms may lose meaning when one attempts to describe mutation effects on protein stability in terms of specific free energy contributions. As an alternative approach, a direct molecular mechanics evaluation is attempted of T4 lysozyme destabilization by five single cavity-creating mutations. The calculations are based on the approach used in calculations of the energetics of packing defects in crystals. For all mutations calculated destabilizations agree with the corresponding experimental values within +/-0.6 kcal/mol. A computational relaxation of the mutant was most difficult to achieve for the mutation producing the smallest cavity. However, calculations do not always reproduce crystallographically observed contraction/expansion of cavities. It is suggested that this may be related to usually observed large RMS differences (> 1 A) between crystallographic and energy-minimized protein structures, and thus correct energetics might be easier to calculate than the correct geometry.  相似文献   

4.
The amino acid sequences of the 51% different horseradish peroxidase HRP C and turnip peroxidase TP 7 have previously been completed by us, but the three-dimensional structures are unknown. Recently the amino acid sequence and the crystal structure of yeast cytochrome c peroxidase have appeared. The three known apoperoxidases consist of 300 +/- 8 amino acid residues. The sequences have now been aligned and show 18% and 16% identity only, between the yeast peroxidase and plant peroxidase HRP C and TP 7, respectively. We show that different structural tests all support similar protein folds in plant peroxidases and yeast peroxidase and, therefore, a common evolutionary origin. The following tests support this thesis: (a) predicted helices in the plant peroxidases follow the complex pattern observed in the crystal structure of cytochrome c peroxidase; (b) their hydropathic profiles are similar and agree with observed buried and exposed peptide chain in cytochrome c peroxidase; (c) half-cystines which are distant in the amino acid sequence of plant peroxidases become spatial neighbours when fitted into the cytochrome c peroxidase model; (d) the two-domain structure proposed from limited proteolysis of apoperoxidase HRP C is observed in the crystal structure of cytochrome c peroxidase. The similarities and differences of the plant and yeast peroxidases and the reactive side chains of a plant peroxidase active site are described. The characteristics of Ca2+-binding sequences, derived from several superfamilies, are applied to predict the Ca2+-binding sequences in plant peroxidases.  相似文献   

5.
Energy minimization is an important step in molecular modeling of proteins. In this study, we sought to develop a minimization strategy which would give the best final structures with the shortest computer time in the AMBER force field. In the all-atom model, we performed energy minimization of the melittin (mostly alpha-helical) and cardiotoxin (mostly beta-sheet and beta-turns) crystal structures by both constrained and unconstrained pathways. In the constrained path, which has been recommended in the energy minimization of proteins, hydrogens were relaxed first, followed by the side chains of amino acid residues, and finally the whole molecule. Despite the logic of this approach, however, the structures minimized by the unconstrained path fit the experimental structures better than those minimized by constrained paths. Moreover, the unconstrained path saved considerable computer time. We also compared the effects of the steepest descents and conjugate gradients algorithms in energy minimization. Previously, steepest descents has been used in the initial stages of minimization and conjugate gradients in the final stages of minimization. We therefore studied the effect on the final structure of performing an initial minimization by steepest descents. The structures minimized by conjugate gradients alone resembled the structures minimized initially by the steepest descents and subsequently by the conjugate gradients algorithms. Thus an initial minimization using steepest descents is wasteful and unnecessary, especially when starting from the crystal structure. Based on these results, we propose the use of an unconstrained path and conjugate gradients for energy minimization of proteins. This procedure results in low energy structures closer to the experimental structures, and saves about 70-80% of computer time. This procedure was applied in building models of lysozyme mutants. The crystal structure of native T4 lysozyme was mutated to three different mutants and the structures were minimized. The minimized structures closely fit the crystal structures of the respective mutants (less than 0.3 A root-mean-square, RMS, deviation in the position of all heavy atoms). These results confirm the efficiency of the proposed minimization strategy in modeling closely related homologs. To determine the reliability of the united atom approximation, we also performed all of the above minimizations with united atom models. This approximation gave structures with similar but slightly higher RMS deviations than the all-atom model, but gave further savings of 60-70% in computer time. However, we feel further investigation is essential to determine the reliability of this approximation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Fifteen single-site charge-reversal mutations of yeast cytochrome c peroxidase (CcP) have been constructed to determine the effect of localized charge on the catalytic properties of the enzyme. The mutations are located on the front face of CcP, near the cytochrome c binding site identified in the crystallographic structure of the yeast cytochrome c-CcP complex [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. The mutants are characterized by absorption spectroscopy and hydrogen peroxide reactivity at both pH 6.0 and 7.5 and by steady-state kinetic studies using recombinant yeast iso-1-ferrocytochrome c(C102T) as a substrate at pH 7.5. Some of the charge-reversal mutations cause detectable changes in the absorption spectrum, especially at pH 7.5, reflecting changes in the equilibrium between penta- and hexacoordinate heme species in the enzyme. An increase in the amount of hexacoordinate heme in the mutant enzymes correlates with an increase in the fraction of enzyme that does not react with hydrogen peroxide. Steady-state velocity measurements indicate that five of the 15 mutations cause large increases in the Michaelis constant (R31E, D34K, D37K, E118K, and E290K). These data support the hypothesis that the cytochrome c-CcP complex observed in the crystal is the dominant catalytically active complex in solution.  相似文献   

7.
This study sought to attain a better understanding of the contribution of buried water molecules to protein stability. The 3SS human lysozyme lacks one disulfide bond between Cys77 and Cys95 and is significantly destabilized compared with the wild-type human lysozyme (4SS). We examined the structure and stability of the I59A-3SS mutant human lysozyme, in which a cavity is created at the mutation site. The crystal structure of I59A-3SS indicated that there were ordered new water molecules in the cavity created. The stability of I59A-3SS is 5.5 kJ/mol less than that of 3SS. The decreased stability of I59A-3SS (5.5 kJ/mol) is similar to that of Ile to Ala mutants with newly introduced water molecules in other globular proteins (6.3 +/- 2.1 kJ/mol), but is less than that of Ile/Leu to Ala mutants with empty cavities (13.7 +/- 3.1 kJ/mol). This indicates that water molecules partially compensate for the destabilization by decreasing hydrophobic and van der Waals interactions. These results provide further evidence that buried water molecules contribute to protein stability.  相似文献   

8.
J Cherfils  P Vachette  J Janin 《Biochimie》1990,72(8):617-624
The allosteric properties of aspartate transcarbamylase from E coli have been investigated by a combination of genetic, biochemical and structural studies. Based on the X-ray structures of the enzyme in T and R state established by Lipscomb et al, we have analyzed the interactions between the 12 polypeptide chains and have identified subunit interfaces that play a major part in the allosteric mechanism: the c1c4 interface between the 2 catalytic trimers, and one of 2 different interfaces between catalytic and regulatory chains, the c1r4 interface, which exists only in T state. We have modelled mutations affecting these interfaces: mutation pAR5 in the gene coding for r chains concerns the c1r4 interface, mutation Tyr----Phe 240 in the gene coding for c chains, the c1c4 interface. Both mutant proteins have reduced cooperativity and/or allosteric regulation by CTP and ATP. Molecular mechanic simulations lead to specific proposals for the structural origin of these effects, and some of the proposals can be checked by site-directed mutagenesis. Finally, we have modelled substrates bound at the active site of the T state, which binds aspartate less tightly than the R state and for which X-ray structures of bound substrate analogs were not available.  相似文献   

9.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

10.
Packing interactions in bacteriophage T4 lysozyme were explored by determining the structural and thermodynamic effects of substitutions for Ala98 and neighboring residues. Ala98 is buried in the core of T4 lysozyme in the interface between two alpha-helices. The Ala98 to Val (A98V) replacement is a temperature-sensitive lesion that lowers the denaturation temperature of the protein by 15 degrees C (pH 3.0, delta delta G = -4.9 kcal/mol) and causes atoms within the two helices to move apart by up to 0.7 A. Additional structural shifts also occur throughout the C-terminal domain. In an attempt to compensate for the A98V replacement, substitutions were made for Val149 and Thr152, which make contact with residue 98. Site-directed mutagenesis was used to construct the multiple mutants A98V/T152S, A98V/V149C/T152S and the control mutants T152S, V149C and A98V/V149I/T152S. These proteins were crystallized, and their high-resolution X-ray crystal structures were determined. None of the second-site substitutions completely alleviates the destabilization or the structural changes caused by A98V. The changes in stability caused by the different mutations are not additive, reflecting both direct interactions between the sites and structural differences among the mutants. As an example, when Thr152 in wild-type lysozyme is replaced with serine, the protein is destabilized by 2.6 kcal/mol. Except for a small movement of Val94 toward the cavity created by removal of the methyl group, the structure of the T152S mutant is very similar to wild-type T4 lysozyme. In contrast, the same Thr152 to Ser replacement in the A98V background causes almost no change in stability. Although the structure of A98V/T152S remains similar to A98V, the combination of T152S with A98V allows relaxation of some of the strain introduced by the Ala98 to Val replacement. These studies show that removal of methyl groups by mutation can be stabilizing (Val98----Ala), neutral (Thr152----Ser in A98V) or destabilizing (Val149----Cys, Thr152----Ser). Such diverse thermodynamic effects are not accounted for by changes in buried surface area or free energies of transfer of wild-type and mutant side-chains. In general, the changes in protein stability caused by a mutation depend not only on changes in the free energy of transfer associated with the substitution, but also on the structural context within which the mutation occurs and on the ability of the surrounding structure to relax in response to the substitution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We constructed a three-dimensional model of TNFRSF25 (death receptor-3; DR3), a tumor necrosis-receptor family member that is expressed on immune cells and on osteoblasts, to determine whether mutations that are linked to rheumatoid arthritis are likely to have effects on receptor function. Since the crystal structure of DR3 is not known, comparative modeling was used, aligning structural elements of the primary sequences of DR3 with TNFs which have been determined by crystallography, substituting the amino acids of the target protein for those in the known structure, introducing necessary deletions or insertions, followed by energy minimization to yield a putative structure. This approach has been validated by studies of other TNF-family receptors. The results show that the DR3 extracellular domain is comprised of four homologous cysteine-rich domains (CRDs), and that a mutation linked to rheumatoid arthritis is in a region critical for structural integrity of ligand-receptor complexes at the end of CRD3. Specifically, the D158G mutation eliminates two hydrogen bonds normally present in a N/D-T-V/D-C consensus motif typically found flanking the last cysteine of each CRD. This may cause aberrations in either T cell function or in response of bone cells to DR3 ligands, which may contribute to pathology in rheumatoid arthritis. Comparison of RA mutants to mutants in other TNFRSF receptors shows that these occur in homologous positions in CRDs, so that this site is proposed to be a 'hot spot' for mutations in TNFRSF family proteins.  相似文献   

12.
Abstract

Energy minimization is an important step in molecular modeling of proteins. In this study, we sought to develop a minimization strategy which would give the best final structures with the shortest computer time in the AMBER force field. In the all-atom model, we performed energy minimization of the melittin (mostly α-helical) and cardiotoxin (mostly β-sheet and β-turns) crystal structures by both constrained and unconstrained pathways. In the constrained path, which has been recommended in the energy minimization of proteins, hydrogens were relaxed first, followed by the side chains of amino acid residues, and finally the whole molecule. Despite the logic of this approach, however, the structures minimized by the unconstrained path fit the experimental structures better than those minimized by constrained paths. Moreover, the unconstrained path saved considerable computer time. We also compared the effects of the steepest descents and conjugate gradients algorithms in energy minimization. Previously, steepest descents has been used in the initial stages of minimization and conjugate gradients in the final stages of minimization. We therefore studied the effect on the final structure of performing an initial minimization by steepest descents. The structures minimized by conjugate gradients alone resembled the structures minimized initially by the steepest descents and subsequently by the conjugate gradients algorithms. Thus an initial minimization using steepest descents is wasteful and unnecessary, especially when starting from the crystal structure. Based on these results, we propose the use of an unconstrained path and conjugate gradients for energy minimization of proteins. This procedure results in low energy structures closer to the experimental structures, and saves about 70–80% of computer time. This procedure was applied in building models of lysozyme mutants. The crystal structure of native T4 lysozyme was mutated to three different mutants and the structures were minimized. The minimized structures closely fit the crystal structures of the respective mutants (< 0.3 Å root-mean-square, RMS, deviation in the position of all heavy atoms). These results confirm the efficiency of the proposed minimization strategy in modeling closely related homologs. To determine the reliability of the united atom approximation, we also performed all of the above minimizations with united atom models. This approximation gave structures with similar but slightly higher RMS deviations than the all-atom model, but gave further savings of60-70% in computer time. However, we feel further investigation is essential to determine the reliability of this approximation. Finally, to determine the limitation of the procedure, we built the melittin molecule interactively in an α-helical conformation and this model showed an RMS deviation greater than 2.8 Å when compared to the melittin crystal structure. This model was minimized by various strategies. None of the minimized structures converged towards the crystal structure. Thus, although the proposed method seems to give valid structures starting from closely related crystal structures, it cannot predict the native structure when the starting structure is far from the native structure. From these results, we recommend the use of the proposed strategy of minimizing by an unconstrained path using the conjugate gradients algorithm, but only for modeling of closely related structural homologs of proteins.  相似文献   

13.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

14.
Ando N  Barstow B  Baase WA  Fields A  Matthews BW  Gruner SM 《Biochemistry》2008,47(42):11097-11109
Using small-angle X-ray scattering (SAXS) and tryptophan fluorescence spectroscopy, we have identified multiple compact denatured states of a series of T4 lysozyme mutants that are stabilized by high pressures. Recent studies imply that the mechanism of pressure denaturation is the penetration of water into the protein rather than the transfer of hydrophobic residues into water. To investigate water penetration and the volume change associated with pressure denaturation, we studied the solution behavior of four T4 lysozyme mutants having different cavity volumes at low and neutral pH up to a pressure of 400 MPa (0.1 MPa = 0.9869 atm). At low pH, L99A T4 lysozyme expanded from a compact folded state to a partially unfolded state with a corresponding change in radius of gyration from 17 to 32 A. The volume change upon denaturation correlated well with the total cavity volume, indicating that all of the molecule's major cavities are hydrated with pressure. As a direct comparison to high-pressure crystal structures of L99A T4 lysozyme solved at neutral pH [Collins, M. D., Hummer, G., Quillin, M. L., Matthews, B. W., and Gruner, S. M. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 16668-16671], pressure denaturation of L99A and the structurally similar L99G/E108V mutant was studied at neutral pH. The pressure-denatured state at neutral pH is even more compact than at low pH, and the small volume changes associated with denaturation suggest that the preferential filling of large cavities is responsible for the compactness of the pressure-denatured state. These results confirm that pressure denaturation is characteristically distinct from thermal or chemical denaturation.  相似文献   

15.
The comparative study of proteins which differ in primary structure by point mutations permits one to use thermodynamic experiments to obtain information about the role of specific amino acids in determining protein structure and stability. We have now determined the thermodynamic changes induced in six mutants of T4 lysozyme and have compared the results with the wildtype enzyme. Our work is in collaboration with B. Matthews and his colleagues, who have determined the crystal structure of T4 lysozyme and have obtained difference Fourier maps for four of the mutants. The ultimate aim is to correlate changes in protein stability with changes in the detailed structure of the protein. This paper discusses the thermodynamic results obtained from the mutants studied. All the mutants have a lower Tm than the wild-type enzyme and changes in the enthalpy of denaturation are sometimes extraordinarily large. Changes in ΔH of denaturation are usually accompanied by compensating changes in ΔS. The general question of protein stability and the manner in which it varies with temperature and mutations is discussed.  相似文献   

16.
Bacterial catalase-peroxidases are enzymes containing 0.5-1.0 heme per subunit. The identical subunits are generally 80 kDa in size, and the sequenced subunits of E. coli, S. typhimurium and B. stearothermophilus contain 726-731 amino acid residues per subunit. The heme-containing peroxidases of plants, fungi and yeast are monomeric, homologous and 290-350 residues in size. Analyses of the amino acid sequences indicate that the double length of the bacterial peroxidases can be ascribed to gene duplication. Each half is homologous to eukaryotic, monomeric peroxidase and can be modelled into the high-resolution crystal structure of yeast cytochrome c peroxidase. The comparisons and modelling have predicted: (1) the C-terminal half does not bind heme, and bacterial peroxidases have one heme per subunit; (2) the ten dominating helices observed in the yeast enzyme are highly conserved and connected by surface loops which are often longer in the bacterial peroxidases; and (3) yeast cytochrome c peroxidase has evolved more slowly than other known peroxidases. The study has revealed ten invariant residues and a number of highly conserved residues present in peroxidases of the plant peroxidase superfamily and provides a basis for rationally engineered peroxidases.  相似文献   

17.
In order to understand the activity specificity of the hamster cytochrome P450 17 alpha-hydroxylase/17,20-lyase (P450c17), we have studied its structure/activity using three hamster P450c17 recombinant mutants (T202N/D240N/D407H). In transiently transfected COS-1 cells, the mutation T202N reduced 17 alpha-hydroxylation of pregnenolone and progesterone to 24 and 44% of wild type (WT), respectively, followed by reduced 17,20-cleavage to 71 and 67%, respectively. On the other hand, the mutation D240N decreased specifically 17,20-lyase activity to 61% of WT when incubated with pregnenolone while the mutation D407H only decreased 17 alpha-hydroxylation to 46% when incubated with progesterone.To comprehend the altered activity profiles of these hamster P450c17 mutants, we have elaborated a 3D model of the hamster P450c17 and compared it to our preceding model of the human P450c17. Analysis of the mutants with this model showed that, without direct contact to the substrates, these mutations transmit structural changes to the active site. By analogy, these results support the concept that any cellular changes modifying the external structure of P450c17, such as phosphorylation, could have influence on its active site and enzymatic activities.  相似文献   

18.
To further examine the structural and thermodynamic basis of hydrophobic stabilization in proteins, all of the bulky non-polar residues that are buried or largely buried within the core of T4 lysozyme were substituted with alanine. In 25 cases, including eight reported previously, it was possible to determine the crystal structures of the variants. The structures of four variants with double substitutions were also determined. In the majority of cases the "large-to-small" substitutions lead to internal cavities. In other cases declivities or channels open to the surface were formed. In some cases the structural changes were minimal (mainchain shifts < or = 0.3 A); in other cases mainchain atoms moved up to 2 A. In the case of Ile 29 --> Ala the structure collapsed to such a degree that the volume of the putative cavity was zero. Crystallographic analysis suggests that the occupancy of the engineered cavities by solvent is usually low. The mutants Val 149 --> Ala (V149A) and Met 6 --> Ala (M6A), however, are exceptions and have, respectively, one and two well-ordered water molecules within the cavity. The Val 149 --> Ala substitution allows the solvent molecule to hydrogen bond to polar atoms that are occluded in the wild-type molecule. Similarly, the replacement of Met 6 with alanine allows the two solvent molecules to hydrogen bond to each other and to polar atoms on the protein. Except for Val 149 --> Ala the loss of stability of all the cavity mutants can be rationalized as a combination of two terms. The first is a constant for a given class of substitution (e.g., -2.1 kcal/mol for all Leu --> Ala substitutions) and can be considered as the difference between the free energy of transfer of leucine and alanine from solvent to the core of the protein. The second term can be considered as the energy cost of forming the cavity and is consistent with a numerical value of 22 cal mol(-1) A(-3). Physically, this term is due to the loss of van der Waal''s interactions between the bulky sidechain that is removed and the atoms that form the wall of the cavity. The overall results are consistent with the prior rationalization of Leu --> Ala mutants in T4 lysozyme by Eriksson et al. (Eriksson et al., 1992, Science 255:178-183).  相似文献   

19.
Systematic mutation of bacteriophage T4 lysozyme   总被引:22,自引:0,他引:22  
Amber mutations were introduced into every codon (except the initiating AUG) of the bacteriophage T4 lysozyme gene. The amber alleles were introduced into a bacteriophage P22 hybrid, called P22 e416, in which the normal P22 lysozyme gene is replaced by its T4 homologue, and which consequently depends upon T4 lysozyme for its ability to form a plaque. The resulting amber mutants were tested for plaque formation on amber suppressor strains of Salmonella typhimurium. Experiments with other hybrid phages engineered to produce different amounts of wild-type T4 lysozyme have shown that, to score as deleterious, a mutation must reduce lysozyme activity to less than 3% of that produced by wild-type P22 e416. Plating the collection of amber mutants covering 163 of the 164 codons of T4 lysozyme, on 13 suppressor strains that each insert a different amino acid substitutions at every position in the protein (except the first). Of the resulting 2015 single amino acid substitutions in T4 lysozyme, 328 were found to be sufficiently deleterious to inhibit plaque formation. More than half (55%) of the positions in the protein tolerated all substitutions examined. Among (N-terminal) amber fragments, only those of 161 or more residues are active. The effects of many of the deleterious substitutions are interpretable in light of the known structure of T4 lysozyme. Residues in the molecule that are refractory to replacements generally have solvent-inaccessible side-chains; the catalytic Glu11 and Asp20 residues are notable exceptions. Especially sensitive sites include residues involved in buried salt bridges near the catalytic site (Asp10, Arg145 and Arg148) and a few others that may have critical structural roles (Gly30, Trp138 and Tyr161).  相似文献   

20.
The structure and internal motions of the protein hen egg white lysozyme are studied by analysis of simulation and experimental data. A molecular dynamics simulation and an energy minimization of the protein in vacuum have been made and the results compared with high-resolution structures and temperature factors of hen egg white lysozyme in two different crystal forms and of the homologous protein human lysozyme. The structures obtained from molecular dynamics and energy minimization have root-mean-square deviations for backbone atoms of 2.3 Å and 1.1–1.3 Å, respectively, relative to the crystal structures; the different crystal structures have root-mean-square deviations of 0.73–0.81 Å for the backbone atoms. In comparing the backbone dihedral angles, the difference between the dynamics and the crystal structure on which it is based is the same as that between any two crystal structures. The internal fluctuations of atomic positions calculated from the molecular dynamics trajectory agree well with the temperature factors from the three structures. Simulation and crystal results both show that there are large motions for residues involved in exposed turns of the backbone chain, relatively smaller motions for residues involved in the middle of helices or β-sheet structures, and relatively small motions of residues near disulfide bridges. Also, both the simulation and crystal data show that side-chain atoms have larger fluctuations than main-chain atoms. Moreover, the regions that have large deviations among the x-ray crystal structures, which indicates flexibility, are found to have large fluctuations in the simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号