首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bark storage proteins accumulate in the bark of many woody plants during autumn and winter. In poplar (Populus deltoides Bartr. ex Marsh), the accumulation of the 32-kilodalton bark storage protein is controlled by photoperiod. We have isolated a full-length cDNA encoding for the poplar 32-kilodalton bark storage protein and determined its nucleotide sequence. The derived amino acid sequence shows that poplar bark storage protein is rich in serine, leucine, phenylalanine, and lysine. Poplar bark storage protein is similar to the poplar wound-induced cDNA clone 4 and clone 16 (TJ Parsons, HD Bradshaw, MP Gordon [1989] Proc Natl Acad Sci USA 86: 7895-7899). DNA gel blot analysis suggests that poplar bark storage protein is encoded by a multigene family of about five genes. Poplar plants grown in long days contained low levels of mRNA for the bark storage protein. Exposure to short days resulted in an increase in bark storage protein mRNA within 7 days. After 21 days of short day exposure, high levels of mRNA were detected. The accumulation of bark storage protein mRNA in response to short days was also observed in plants exposed to natural shortening daylengths. Our results indicate that the accumulation of poplar bark storage protein mRNA is controlled by photoperiod. This finding will provide a useful system for investigating photoperiodism in woody plants.  相似文献   

2.
In poplar (Populus deltoides Bartr. ex Marsh), a 32-kD bark storage protein (BSP) accumulates in the bark during autumn and winter and declines during spring shoot growth. We investigated the physiological and environmental factors necessary for the degradation of poplar BSP. Poplar plants were exposed to short-day (SD) photoperiods for either 28 or 49 d. Plants exposed to short days for 28 d formed a terminal bud but were not dormant, whereas exposure to short days for 49 d induced bud dormancy. BSP accumulated in bark of plants exposed to both SD treatments. The level of BSP declined rapidly when nondormant plants were returned to long days. BSP levels did not decline in dormant plants that were exposed to long-day (LD) conditions. If dormant plants were first treated with either low temperatures (0[deg]C for 28 d) or with 0.5 M H2CN2 to overcome dormancy and then returned to long days, the level of BSP declined. Removal of buds from non-dormant or dormant plants in which dormancy had been overcome inhibited the degradation of BSP in LD conditions. BSP mRNA levels rapidly declined in plants exposed to long days, irrespective of the dormancy status of the plants or the presence or absence of buds. These results indicate that the buds of poplars are somehow able to communicate with bark storage sites and regulate poplar BSP degradation. These results further support an association of BSP mRNA levels with photoperiod because short days stimulate BSP mRNA accumulation, whereas long days result in a decline of BSP mRNA abundance.  相似文献   

3.
Bark, wood, and root tissues of several Populus species contain a 32- and a 36-kilodalton polypeptide which undergo seasonal fluctuations and are considered to be storage proteins. These two proteins are abundant in winter and not detectable in summer as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodetection. An antibody raised against the 32-kilodalton storage protein of Populus trichocarpa (T. & G.) cross-reacts with the 36-kilodalton protein of this species. The synthesis of the 32- and 36-kilodalton proteins can be induced in micropropagated plants by short-day conditions in the growth chamber. These proteins are highly abundant in structural roots, bark, and wood and combined represent >25% of the total soluble proteins in these tissues. Nitrate concentration in the leaves and nitrate uptake rate decreased dramatically when LD plants were transferred to short-day conditions; the protein content in leaves was unaffected. A decrease of the 32- and 36-kilodalton polypeptides occurs after transferring induced plants back to LD conditions. Both polypeptides are glycosylated and can be efficiently purified by affinity chromatography using concanavalin A-Sepharose 4B. The 32- and the 36-kilodalton polypeptides have identical basic isoelectric points and both consist of at least three isoforms. The storage proteins show a loss in apparent molecular mass after deglycosylation with trifluoromethanesulfonic acid. It is concluded that the 32- and 36-kilodalton polypeptides are glycoforms differing only in the extent of glycosylation. The relative molecular mass of the native storage protein was estimated to be 58 kilodalton, using gel filtration. From the molecular mass and the elution pattern it is supposed that the storage protein occurs as a heterodimer composed of one 32- and one 36-kilodalton subunit. Preliminary data suggest the involvement of the phytochrome system in the induction process of the 32- and 36-kilodalton polypeptides.  相似文献   

4.
5.
Photoperiod control of poplar bark storage protein accumulation   总被引:13,自引:6,他引:7       下载免费PDF全文
Bark storage proteins (BSPs) accumulate in the inner bark parenchyma of many woody plants during autumn and winter. We investigated the effect of a short-day (SD) photoperiod on the accumulation of the 32-kilodalton bark storage protein of poplar (Populus deltoides Bart. ex Marsh.) under controlled environmental and natural growing conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein gel blot analysis revealed that 10 days of SD exposure (8 hours of light) resulted in a 20% increase in the relative abundance of the 32-kilodalton bark storage protein of poplar. After 17 days of SD exposure, the 32-kilodalton bark storage protein accounted for nearly one-half of the soluble bark proteins. In natural field conditions, accumulation of the 32-kilodalton bark storage protein was observed to start by August 18 (daylength 14.1 hours). Immunoprecipitation of in vitro translation products with anti-BSP serum revealed that the SD protein accumulation was correlated with changes in the pool of translatable mRNA. A survey of poplar clones from different geographic origins revealed the presence of the 32-kilodalton BSP in the dormant bark of all the clones tested. These results demonstrate that a SD photoperiod induces, whether directly or indirectly, rapid changes in woody plant gene expression, leading to the accumulation of BSP.  相似文献   

6.
7.
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MSE for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.  相似文献   

8.
Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.  相似文献   

9.
10.
Summary The response to a single defoliation was studied on three clones of Themeda triandra collected in the short, mid, and tall grassland regions of the Serengeti National Park (Tanzania). These sites represent a gradient of decreasing grazing intensity. Growth, allocation pattern, and several morphometric traits were monitored during an 80-day period. Clipped plants of the short and medium clones fully compensated for the reduction of biomass, while plants of the tall clone showed overcompensation. During the first two weeks after clipping, clipped plants showed lower relative growth rates than unclipped ones, whereas the opposite was observed later on. Clipped plants compensated for the removal of leaf area by producing new leaves with lower specific weights and higher nitrogen content. They also produced more, smaller tillers. Although clipped plants mobilized nonstructural carbohydrates from roots and crowns, this did not account for a significant amount of growth. Relative growth rates of unclipped plants of the short clone were higher. The relative growth rate of the short clone diminished less after clipping, but also exhibited the lowest increase later. The tall clone was the most negatively affected early, but showed the highest compensation later. Compared to the other clones, the short ecotype showed many of the characteristics that defoliation induced in each individual of any clone: higher allocation to leaf area production, higher relative growth rate, higher number but smaller size of tillers, and lower leaf specific weights.  相似文献   

11.
12.
The role of temperature during dormancy development is being reconsidered as more research emerges demonstrating that temperature can significantly influence growth cessation and dormancy development in woody plants. However, there are seemingly contradictory responses to warm and low temperature in the literature. This research/review paper aims to address this contradiction. The impact of temperature was examined in four poplar clones and two dogwood ecotypes with contrasting dormancy induction patterns. Under short day (SD) conditions, warm night temperature (WT) strongly accelerated timing of growth cessation leading to greater dormancy development and cold hardiness in poplar hybrids. In contrast, under long day (LD) conditions, low night temperature (LT) can completely bypass the short photoperiod requirement in northern but not southern dogwood ecotypes. These findings are in fact consistent with the literature in which both coniferous and deciduous woody plant species’ growth cessation, bud set or dormancy induction are accelerated by temperature. The contradictions are addressed when photoperiod and ecotypes are taken into account in which the combination of either SD/WT (northern and southern ecotypes) or LD/LT (northern ecotypes only) are separated. Photoperiod insensitive types are driven to growth cessation by LT. Also consistent is the importance of night temperature in regulating these warm and cool temperature responses. However, the physiological basis for these temperature effects remain unclear. Changes in water content, binding and mobility are factors known to be associated with dormancy induction in woody plants. These were measured using non-destructive magnetic resonance micro-imaging (MRMI) in specific regions within lateral buds of poplar under SD/WT dormancing inducing conditions. Under SD/WT, dormancy was associated with restrictions in inter- or intracellular water movement between plant cells that reduces water mobility during dormancy development. Northern ecotypes of dogwood may be more tolerant to photoinhibition under the dormancy inducing LD/LT conditions compared to southern ecotypes. In this paper, we propose the existence of two separate, but temporally connected processes that contribute to dormancy development in some deciduous woody plant: one driven by photoperiod and influenced by moderate temperatures; the other driven by abiotic stresses, such as low temperature in combination with long photoperiods. The molecular changes corresponding to these two related but distinct responses to temperature during dormancy development in woody plants remains an investigative challenge.  相似文献   

13.
An ABSCISIC ACID-INSENSITIVE 3 (AB13) homologous gene was isolated from poplar (Populus trichocarpa). The deduced protein of 736 amino acids showed sequence similarity to other VP1/AB13 proteins within four regions. PtAB13 is encoded by a single gene in poplar and, as in Arabidopsis, highly expressed in developing seeds.  相似文献   

14.
15.
杨树(Populus deltoides Bartr.ex Marsh)顶芽分生组织细胞经一种改良的高锰酸钾固定法固定后,显示出一种十分清晰的内膜结构,尤其展现了内质网与其他膜系统存在一种结构上的密切联系。一些与核膜相连接的内质网伸展到细胞质中与线粒体、质体及高尔基体发生联系,可延伸到质膜。还有些内质网的一端与一个细胞的核膜相连结,其另一端穿过胞间连丝与邻近的另一个细胞的核膜相连结,在两个相邻的细  相似文献   

16.
Intra-clonal competition was studied in young hybrid poplar plantations to assess the effects of spacing on growth, biomass production and allocation, and morphological characteristics of above- and below-ground tree parts. Three spacings were used as whole-plots (1 × 1 m, 3 × 3 m and 5 × 5 m), with two hybrid poplar clones as subplots (BT747, Populus balsamifera L. × P. trichocarpa Torr. & Gray; MB915, P. maximowiczii A. Henry × P. balsamifera L.) in a split-plot design. After six growing seasons, diameter at breast height (dbh) increased by about 120% from the 1 × 1 m to the 5 × 5 m spacing for clone MB915, while there was no significant change in dbh for the other clone. The effect of spacing on height growth was opposite for the clones; it increased by about 175% from the narrowest to the widest spacing for clone MB915, while it decreased by about 27% for clone BT747. Estimates of above-ground biomass production after six growing seasons were significantly reduced with increasing spacing, with 29.6, 4.9 and 3.2 MgDM ha−1 on average from the narrowest to the widest spacing. Branch traits and the vertical distribution of leaf area were the most affected by spacing for both clones, while live crown ratio and percentage of syllepsis did not change. Spacing also affected proportions of biomass allocated to stem, leaves, and branches, but allocation to roots did not change.  相似文献   

17.
Bud dormancy in perennial plants adapts to environmental and seasonal changes. Bud dormancy is of ecological interest because it affects forest population growth characteristics and is of economical interest because it impacts wood production levels. To understand Pinus sylvestris L. var. mongolica litv. bud-dormancy and bud-burst mechanisms, we characterized the proteomes of their apical buds at the four critical stages that occur during the dormancy-to-growth transition. Ninety-six proteins with altered expression patterns were identified using NanoLC–ESI-MS/MS. The majority of these proteins (57%) are involved in metabolic and other cellular processes. For 28% of the proteins, a function could not be assigned. However, because their expression levels changed, they may be potential candidate bud development- or dormancy-related proteins. Of the 75 non-redundant bud proteins identified, ascorbate peroxidase, pathogenesis-related protein PR-10, and heat shock proteins dramatically increased during August and November, suggesting that they may involved in the initiation of bud dormancy. Conversely, S-adenosylmethionine synthetase, abscisic acid/stress-induced proteins, superoxide dismutase (SOD), caffeoyl-CoA O-methyltransferase, actin, and type IIIa membrane protein cp-wap13 had greater expression levels during April, suggesting that they may be involved in the initiation of bud dormancy-release. Cell division cycle protein 48 and eukaryotic initiation factors 4A-15 and 4A had greater expression levels during May, suggesting that they may regulate cell proliferate and differentiation in the shoot apical meristem. These observations provide insights into the molecular mechanisms that induce or break bud dormancy.  相似文献   

18.
Electron microscopic observations revealed that the tissues of poplar (Populus deltoides Bartr. ex Marsh) apical bud cells, which were fixed by a modified procedure of potassium permanganate fixative, showed a distinct endomembrane organization, in particular, the structural associations of the endoplasmic reticulum (ER) with other membrane systems. The striking findings are that some ER elements were in connection with the nuclear envelopes of two adjacent cells through plasmodesmata, and many ER elements were also associated with mitochondria, plastids, Golgi bodies or the plasma membrane (PM), forming a bridge-like continuum among various endomembrane systems or between nucleus to nucleus. A great number of plasmodesmata existed between cells, indicating a perfectly integrated symplasmic structure in poplar apical bud meristem grown in a long day environment. During the short day-induced dormancy, ER contracted, leading to its disassociation between nuclei, and between the nucleus and organelles/plasmalemma in many cells. After dormancy broke and shoots growth resumed, contracted ER was no longer observed in the apical bud cells. The ER associations with other endomembrane systems and the intercellular communication channels were re-established similar to that of plants before dormancy induction. These observations suggest that ER may play an important role in linking-up between the nucleus and organelles, and between the nucleus and the nucleus (or cell-to-cell), and seemingly coordinating various physiological processes by the bridging-like associations. And the contraction of ER under short-day may result in the growth cessation and the development of dormancy in poplar.  相似文献   

19.
 Mycorrhizal micropropagated Castanea sativa plants were studied in terms of growth and physiological parameters following in vitro mycorrhization with Pisolithus tinctorius. Mycorrhization enhanced growth of micropropagated chestnut plants, increased their protein content and photosynthetic rates, decreased the respiratory rates and CO2 compensation point. RuBisCO activity was not significantly different in mycorrhizal and control plants, although there was an increase in the amount of RuBisCO in the former. Mycorrhization increased plant biomass and improved plants physiological status, thus enhancing the acclimatization process. Accepted: 21 May 1997  相似文献   

20.
 Respiration in vegetative buds of mature Betula pendula, Alnus glutinosa and Prunus padus trees was measured monthly at 15°C from mid-October 1996 to natural outdoor budburst in April 1997. In B. pendula the effect of bud water content on respiration was also estimated (December–April) by artificial imbibition of buds for 24 h prior to measurement of respiration. For estimation of corresponding bud dormancy status, batches of twigs were forced at identical monthly intervals at 15°C in long days (24 h), and budburst recorded. In all species dormancy was deepest when the leaves were shed in October, and dormancy was first alleviated in P. padus followed by B. pendula and A. glutinosa. However, bud respiration capacity was not related to dormancy release as it decreased in all species from October to November and displayed no notable increase until February in P. padus, March in B. pendula and April in A. glutinosa, after completion of dormancy release. Rather, increase in respiration coincided with growth resumption prior to budburst. Artificial imbibition of B. pendula buds increased the water content by approximately 10% (FW) and induced a doubling of the respiration rate (December–February). Moreover, the seasonal variation in bud water content (October–April) explained 94% of the variation in respiration in B. pendula and P. padus, and 84% in A. glutinosa. These observations suggest an important role of water content for respiration. During a cold period from mid-December to mid-January with mean temperature of –9.7°C dormancy release was arrested in P. padus, and to some degree in A. glutinosa, whereas dormancy release progressed normally in B. pendula. This indicates species differences in lower critical temperatures for dormancy release. Received: 30 June 1997 / Acceped: 1 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号