首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通常认为纤维素的降解过程,首先是纤维素酶(纤酶)分子吸附到纤维素表面,然后,内切葡聚糖苷酶(内切酶)在葡聚糖链的随机位点水解底物,产生寡聚糖;外切葡聚糖苷酶(外切酶),从葡聚糖链的非还原端进行水解,主要产物为纤维二糖,需要两类酶的"协同"才能完成对纤维素的降解。纤维素酶分子由催化结构域(catalyticdomain,CD)、纤维素结合结构域(cellulose-bindingdomain,CBD)和一个连接桥(linker)三部分组成。近年来,纤维素酶分子结构与功能的研究取得了实质性的进展。不同…  相似文献   

2.
天然纤维素的结晶区必需在内、外切纤维素酶的协同作用下,始可被降解,这是纤维素降解的限速步骤。内、外切纤维素酶均为β-1,4-糖苷键的水解酶,但单一的内、外切纤维素酶却都不能水解天然纤维素的结晶区。内、外切纤维素酶怎样协同降解纤维素的机理一直未得阐明,是天然纤维素降解机制研究中的难点。纤维素酶分子是由具有催化功能的催化结构域(catalytic domain,CD)和具有结合纤维素功能的纤维素结合(吸附)结构域(cellulse biding domain,CBD)及涟结它们的链结区(linker)序列组成。已知一细菌的CBD在吸附纤维素后,纤维素聚合物断裂形成短小纤维,但这一现象还未在真菌中有类似发现,通过对插入质粒pUC-18上的微紫青霉外切葡聚糖纤维二糖水解酶CBHI的 cDNA基因,进行系列序列定向缺失等体外操作,得到了催化结构域序列缺失的重组质粒,转化大肠杆菌JM109后,利用纤维素结合结构域CBD可吸附纤维素的特性,筛选到含CBD编码区的转化子PUC18G,生产出了LacZ-CBD融合蛋白,经木瓜蛋白酶有限酶切后,分离纯化得到了CBD结构域及其链结区称为:CBDCBHI。经X光衍射、红外光谱分析、热活力测定和扫描电镜观察表明,CBDCBHI吸附纤维素后,能够导致纤维素聚合物氢键断裂,结晶度减低和形成短纤维,从而在底物可及性上为内切葡聚糖酶的水解糖化作用提供了条件,为真菌内、外切纤维素酶协同降解天然纤维素的作用机制提供了实验支持,并提出了内切纤维素酶的水解作用可为外切纤维素酶吸附纤维素提供能量的推论。  相似文献   

3.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):291-297
为更好地弄清草鱼(Ctenopharyngodon idella)肠道纤维素降解细菌的种类,采用羧甲基纤维素(CMC)作为唯一碳源的选择性培养基,分别从草鱼肠道内容物和肠道黏膜中分离到了40株产纤维素酶细菌。16S rRNA基因序列的分析结果显示,大多数产纤维素酶细菌为气单胞菌属(Aeromonas)的种类,其次为肠杆菌属(Enterobacter)的细菌以及未经分离纯培养的细菌(Uncultured bacterium)。进一步研究细菌产纤维素酶能力发现,纤维素酶活性显著性高于其他菌株的分别是A. veronii MC2、A. veronii BC6、肠杆菌科(Enterobacteriaceae)中一种未经分离纯培养的细菌BM3(Uncultured bacterium BM3)和A. jandaei HC9。草鱼肠道中简答气单胞菌(A. jandaei)、类志贺邻单胞菌(Plesiomonas shigelloides)、阴沟肠杆菌(E. cloacae)以及产气肠杆菌(E. aerogenes)是被作为产纤维素酶细菌的首次报道。    相似文献   

4.
酶法降解植物纤维素技术研究   总被引:6,自引:0,他引:6  
用正交试验法探讨了以麦秸为原料进行纤维素酶降解的工艺条件。正交试验的结果表明,影响麦秸纤维素降解的因素的主次顺序为A(酶添加量)>B(底物浓度)>E(时间)>C(温度)>D(pH值),纤维素酶解麦秸纤维素的最佳组合为A3B1E3C3D2,即纤维素酶的添加量为0.2%,底物浓度为5%,反应时间为2h,反应温度50℃,pH5.0时为最佳条件。在比常规酶解法时间缩短12-30倍的条件下,能使纤维素降解葡萄糖的转化率达22.3%。  相似文献   

5.
统合生物加工过程(Consolidated bioprocessing,CBP)具有应用于纤维素乙醇生产的潜力,而该技术的关键是构建能有效降解纤维素的工程菌株。酿酒酵母是传统的乙醇发酵菌株,作为CBP宿主菌株具有很多优势,因此在酿酒酵母中表达纤维素酶引起研究者的普遍关注。综述了纤维素酶基因在酿酒酵母中表达的影响因素,包括基因表达盒表达元件(启动子、信号肽和终止子等)、纤维素酶基因拷贝数及存在形式以及纤维素酶基因来源等,并对一种和多种纤维素酶基因在酿酒酵母中的表达及构建得到的CBP菌株研究进展做了简要介绍。  相似文献   

6.
纤维素酶分子生物学研究进展及趋向吴显荣,穆小民(北京农业大学生物学院北京100094)自从1906年从蜗牛消化液中发现纤维素酶以来,人们在纤维素的生物转化方面进行了大量的研究,但由于纤维素底物的高度复杂性等原因,纤维素的生化转化与利用与实际应用一直有相当的距离。八十年代以来,由于分子生物学的发展及生物工程技术的兴起,纤维素酶的应用又出现了新的前景。  相似文献   

7.
研究了彩绒草盖菌在不同碳源和氮源培养基中生长时,对纤维素酶、半纤维素酶、木质素酶(漆酶、多酚氧化酶、愈创木酚氧化酶)分泌的影响。结果表明不同碳源和氮源对酶类的分泌影响很大,富含淀粉的物质能明显促进木质素酶的分泌,而专一性底物(纤维素和半纤维素)对纤维素酶和半纤维素酶有诱导作用,麸皮也能诱导半纤维素酶的产生。  相似文献   

8.
紫孢侧耳栽培期基质中纤维素类的降解和有关酶活的变化   总被引:2,自引:0,他引:2  
以棉籽壳为基质栽培紫孢侧耳(Pleurotussapidus),分别在菌丝长满期、菇蕾期、一茬菇和二茬菇时测定培养料中纤维素和半纤维素含量的变化以及纤维素酶(CMC酶)和半纤维素酶活性的变化。结果表明:从接种到一茬菇时期,纤维素酶、半纤维素酶活不断升高,此后,迅速降低;基质中两种酶的底物含量降低速度以菇蕾一一茬菇时最大。菇蕾期后,两种底物的减少量多,菇蕾期以前较少。菇蕾期以前半纤维素降解稍多,菇蕾期以后纤维素降解较多。  相似文献   

9.
纤维素酶(Cellulase)是把纤维素降解成葡萄糖、由多个酶协同作用的多酶体系,广泛存在于细菌、真菌和动植物细胞中,部分微生物体内有复杂的纤维素水解系统,可以有效地水解纤维素。目前微生物纤维素酶的研究较为集中,并已广泛应用于生物乙醇生产、食品加工提纯、酿造工业发酵、纺织后整理和饲料加工等多个领域。  相似文献   

10.
植物纤维的水解与SSF过程的数学模型   总被引:4,自引:0,他引:4  
采用一种植物纤维木糖渣为原料,对纤维素酶水解及同时糖化和发酵(SSF)过程进行了研究,研究结果表明,在纤维素含量为42g.L^-1,纤维素酶的加入量为280FPIU.L^-1,乳酸菌用量为0.5g.L^-1时,乳酸对纤维素的转化率可达80%,并从反应机理及动力学角度出发,建立了纤维素酸水解与SSF过程的数学模型。  相似文献   

11.
纤维素酶的生物化学和分子生物学研究新进展   总被引:18,自引:0,他引:18  
林风 《生命科学》1994,6(1):18-23
纤维素酶的生物化学和分子生物学研究新进展林风(福建省微生物研究所福州350007)1引言纤维素是地球上最丰富的可更新的资源之一,占地球总生物量的40%,与人类生存有密切的关系。从纤维素酶入手以期达到有效利用天然纤维素目的的研究已有八十多年的历史。近年...  相似文献   

12.
研究了彩绒革盖菌在不同硬源和氮源培养基中生长时,对纤维素酶、革纤雄素酶、本质素酶(漆酶、多酚氧化酶、愈创木酚氧化酶)分泌的影响。表明不同碳源和氮源对酶类失发泌影响很大,富含淀粉的物质能明显促进本质素酶的分泌,而专一性底物(纤维素和半纤维素)对纤维素酶和半纤维素酶有诱导作用,麸皮也能话导半纤维素酶的产生。  相似文献   

13.
纤维素酶与生物抛光技术   总被引:1,自引:0,他引:1  
纤维素酶与生物抛光技术张才喜(浙江省农业大学园艺系,杭州310029)纤维素酶是一种能分解植物中纤维素的糖蛋白,其分子呈球形或椭圆形,分子量在30—70KD之间。将纤维素酶应用于工业上已经产生了巨大的经济和社会效益。工业上应用的纤维素酶主要有两类:细...  相似文献   

14.
裂褶菌纤维二糖脱氢酶(cellobiose dehydrogenase, CDH)可以提高纤维素酶对纤维素的降解。以纤维二糖为电子供体, CDH作用于羧甲基纤维素可降低其溶液的粘度,作用于纤维素 CF11和磷酸膨胀纤维素,分别使其悬浊液的浊度提高7%和14.4%。CDH与纤维二糖水解酶或内切纤维素酶在降解棉花纤维素时没有表现出协同作用。但若棉花事先在纤维二糖存在下用CDH预处理,则变得易于被水解。  相似文献   

15.
纤维二糖脱氢酶的纤维素降解中的作用研究   总被引:5,自引:0,他引:5  
裂褶菌纤维二糖脱氢酶(cellobiose dehydrogenase,CDH)可以提高纤维素酶对纤维素的降解。以纤维二糖为电子供体,CDH作用于羧甲基纤维可降低其溶液的粘度,作用纤维素CF11和磷酸膨胀纤维素,分别使其悬浊液的浊度提高7%和14.4%。CDH与纤维二糖水解酶或切纤维素酶在降解棉花纤维素时没有表现出协同作用。但若棉花事先在纤维二糖存在下用CDH预处理,则变得易于被水解。  相似文献   

16.
木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2和egl2,Aspergillus aculeatus cbh1、egl1和bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。  相似文献   

17.
在筛选纤维素降解菌的过程中,我们发现在液体曲上纤维素分解菌的酶活力普遍较低,为了提高液体曲纤维素酶活力,我们进行了部分条件试验,试图阐明某些化学因素对纤维素酶活性的影响,为纤维素酶生产提供实验依据。互材料与方法】.1材料里.1.1试验菌株烟曲霉FOI(ASPergilIusf。migat。sFresenfus)。卫.1.2培养基及培养方法斜面培养基:PDA培养基液体培养基(yo):鼓皮2,玉米芯2,硫酸按0.4,磷酸二氢钾0.2,硫酸镁0.05,蛋白陈0.1,PH自然。培养方法:100ml/500ml三角瓶,1.okg/cm‘灭菌3Omin,冷却,接种量约Icm‘…  相似文献   

18.
聚焦于嗜热性木质纤维素酶在纤维素乙醇生产中的应用,归纳了限制纤维素乙醇商业化的技术瓶颈,简单介绍了嗜热性木质纤维素酶的特点,重点介绍了嗜热性木质纤维素酶在筛选、修饰、固定化、异源表达、代谢调控以及协同作用中的研究进展,讨论了嗜热性木质纤维素酶在纤维素乙醇生产中发挥的作用。最后,提出了嗜热性木质纤维素酶在纤维素乙醇生产中面临的问题并展望了其应用前景。  相似文献   

19.
为了筛选具有高效分解玉米秸秆纤维素能力的菌株,采集玉米秸秆还田土样作为样品,并于20℃条件下进行富集培养。利用以玉米秸秆纤维素为唯一碳源的固体分离培养基和刚果红染色法进行初筛,再将筛选到的菌株进行液体发酵培养并取上清液测定酶活,最终获得1株产纤维素酶能力较强的真菌SY-403。结合形态学特征与分子生物学鉴定结果得知,菌株SY-403为蓝状菌属(Talaromyces stollii)。对其所产纤维素酶酶学性质进行初步研究,结果表明,该酶最适反应pH为6.0,最适反应温度为20℃。在模拟室外条件(15℃)下进行秸秆降解试验,玉米秸秆经菌株SY-403处理40 d时,秸秆失重率及纤维素分解率分别达到42.67%、55.26%。利用傅里叶变换红外(Fourier transform infrared,FTIR)光谱技术对降解过程中官能团的变化进行分析,结果表明,纤维素相关谱峰(1 052~1 054 cm-1)相对强度减弱,而羟基相关谱峰(1 328~1 330 cm-1)相对强度增强,这说明纤维素已被分解为可利用的短链结构,即菌株SY-403可用于降解玉米秸秆。  相似文献   

20.
不同碳源和氮源对金针菇降解木质纤维素酶活性的影响   总被引:1,自引:0,他引:1  
安琪  吴雪君  吴冰  戴玉成 《菌物学报》2015,34(4):761-771
以3株栽培的金针菇Flammulina velutipes为材料,研究它们在玉米芯和棉子壳以及不同碳源、氮源培养条件下纤维素、半纤维素和木质素降解酶活性的规律。结果表明,不同金针菇菌株的羧甲基纤维素酶、木聚糖酶和漆酶活力显著不同(P<0.001),同时,培养条件对羧甲基纤维素酶、木聚糖酶和漆酶的活力都有显著影响(P<0.001)。在简单碳源存在的条件下,金针菇的羧甲基纤维素酶和木聚糖酶活力远远低于复杂碳源培养基(P<0.05)。全营养培养基上生长的金针菇的羧甲基纤维素酶和木聚糖酶活力低于缺乏碳源和氮源的培养基(P<0.05)。漆酶活力在无简单氮源培养基上低于全培养基(P<0.05)和无葡萄糖培养基(P<0.05),即复杂碳源和氮源培养基上的漆酶活力低于简单碳源和氮源培养基(P<0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号