首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The effect of water-stress on photosynthetic carbon metabolism in spinach ( Spinacia oleracea L.) has been studied in experiments in which water-stress was induced rapidly by floating leaf discs on sorbitol solutions or wilting detached leaves, and in experiments in which water-stress was allowed to develop gradually in whole plants as the soil dried out. In both short- and long-term water stress, the rate of photosynthesis in saturating CO2 did not decrease until leaf water potential decreased below -1.0 MPa. However, at smaller water deficits there was already an inhibition of starch synthesis, while sucrose synthesis remained constant or increased. This change in partitioning was accompanied by an increase in activation of sucrose-phosphate synthase (revealed as an increase in activity assayed in the presence of low hexose-phosphate and inorganic phosphate, while the activity assayed with saturating hexosephosphates remained unaltered). Water-stressed leaves had a two- to three-fold higher sucrose content at the end of the night, and contained less starch than non-stressed leaves. When leaves were held in the dark, sucrose was mobilized initially, while starch was not mobilized until the sucrose had decreased to a low level; in water-stressed leaves, starch mobilization commenced at a two-fold higher sucrose content. It is concluded that water-stressed leaves maintain higher sucrose and lower starch levels than non-stressed leaves. This response is found in rapid and long-term stress, and represents an inherent response to water deficits.  相似文献   

2.
In Vitis vinifera L. cv. Chardonnay maintained in a greenhouse,the maximum rate of photosynthesis, the measured rates of denovo sucrose and starch synthesis and the total leaf sucroseand starch contents were relatively constant throughout theperiod from April to July although the partitioning of newlyfixed carbon was modified in favour of sucrose synthesis half-waythrough the growing period. In these experimental conditions,no significant differences in these parameters were observedin plants from which the fruit had been removed in comparisonto the controls. In field-grown vines, photosynthesis rose toa maximum in the early morning consistent with the increasein ambient irradiance and then subsequently progressively decreased.This occurred every day. On clear days the mid-morning depressionin the rate of CO2 assimilation was closely linked to decreasein stomatal conductance, but there was no correlation betweenthese parameters on days when the sun was overcast. There wasno correlation between leaf sucrose content and the depressionin photosynthesis. The calculated rate of non-cyclic electronflow did not decline in parallel with the mid-morning depression and the quantum efficiency of photosystem II was constantfor the whole of the period when the CO2 assimilation was decreasing.The mid-morning depression of photosynthetic CO2 assimilationwas related to both stomatal and non-stomatal effects. In neithersituation did it have any measurable feedback effect on theelectron transport rate or on the carbo hydrate contents ofthe leaves. Key words: Vitis vinifera L., source-sink interactions, sucrose, starch, photosynthesis  相似文献   

3.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

4.
A dual-surface leaf chamber was used to investigate the responsesof net photosynthesis and leaf conductance to independent changesin the humidity environments of the upper and lower surfacesof leaves of sunflower and soybean. In sunflower decreasingthe humidity around the upper leaf surface while maintainingthat of the lower surface constant and high reduced both thephotosynthetic rate and the conductance of the lower surface.These reductions could not be attributed to changes in bulkleaf water potential since the transpiration rate of the wholeleaf remained constant. Similarly, the reductions were not relatedto localized water deficits in the lower epidermis or lowermesophyll since the transpiration rate of the lower surfacewas reduced. Possible mechanisms whereby the gas exchange characteristicsof the lower leaf surface of sunflower respond to the humidityenvironment of the upper surface are discussed. In contrastto sunflower, the photosynthetic rate of the lower surface ofsoybean was insensitive to the humidity environment of the uppersurface. In leaves of sunflower grown under a moderate temperature anda medium light level, simultaneous decreases of humidity atboth leaf surfaces reduced the photosynthetic rate of the wholeleaf without affecting the substomatal partial pressure of CO2.In contrast, with leaves developed under a cool temperatureand a high light level, both the photosynthetic rate and thesubstomatal partial pressure of CO2 were reduced. Evidently,the occurrence in sunflower of the response pattern suggestinga non-stomatal inhibition of photosynthesis by low humiditydepends upon the environment during growth. The possibilitythat this non-stomatal inhibition may be an artifact due toan error in the assumption of water vapour saturation withinthe leaf airspace is considered. Key words: Vapour pressure deficit, photosynthesis, conductance, non-stomatal inhibition, Helianthus annuus, Glycine max  相似文献   

5.
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.  相似文献   

6.
The reduction of photosynthetic rates with tree age has been proposed as a major driver of the productivity declination along ontogeny. It is not clear, however, how environmental humidity affects stomatal conductance and biochemical potential of photosynthesis in trees belonging to different age-classes. We assessed daily cycles of gas exchange on leaves of juvenile and mature individuals of the tropical high-elevation tree Alnus jorullensis Kunth (Betulaceae), at two sites with contrasting precipitation in the Venezuelan Andes. Photosynthesis and stomatal conductance were higher in juvenile trees during the morning and at noon in the mesic site, and were in general similar between age-classes in the wet site. Under light-saturating conditions, the net photosynthetic rate was similar between the age-classes at the wet site and higher for juvenile trees at the mesic site, whereas stomatal conductance did not differ between age-classes and was higher at the wet site. Daily cycles of gas exchange and a type II regression model between photosynthesis and intercellular CO2 concentration indicated that the better performance of juvenile trees at the mesic site was due to lower non-stomatal limitations. These results support the proposal that non-stomatal limitations—rather than stomatal ones—are involved in the decay of photosynthesis in mature trees, and suggest that such limitations may be evident only under drier conditions.  相似文献   

7.
Stem and leaf photosynthetic responses to environmental parameters were studied in Spartium junceum L., a legume with chlorophyllous stems. Stem net photosynthesis (Pn) was consistently lower than leaf Pn. The low stem Pn was due to lower quantum yield, lower mesophyll conductance and lower CO2-saturated Pn than that of leaf Pn. Stomatal limitations to leaf and stem Pn were similar (25%). Water stress caused a greater reduction in leaf Pn than that of stems. Leaf Pn was also reduced in water-stressed plants following rehydration. The reduced leaf Pn was associated with a reduced photon saturated Pn rate and a reduced CO2 saturated Pn rate. Apparent quantum yield, mesophyll conductance and stomatal limitation of leaves were unaffected by water-stress. Stem Pn following rehydration was not influenced by the water-stress treatment. In general, leaf Pn was more responsive to environmental parameters and more sensitive to water stress than stem Pn. These data support the hypothesis that stem Pn has greater tolerance of water stress, but is limited to low Pn by biochemical means compared to leaves.  相似文献   

8.
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F M) and the variable (F V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl chlorophyll - PFD photon flux area density - PSI, PSII photosystem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - leaf water potential C.I.W.-D.P.B. Publication No. 775  相似文献   

9.
C4 photosynthesis and water stress   总被引:1,自引:0,他引:1  
Ghannoum O 《Annals of botany》2009,103(4):635-644

Background

In contrast to C3 photosynthesis, the response of C4 photosynthesis to water stress has been less-well studied in spite of the significant contribution of C4 plants to the global carbon budget and food security. The key feature of C4 photosynthesis is the operation of a CO2-concentrating mechanism in the leaves, which serves to saturate photosynthesis and suppress photorespiration in normal air. This article reviews the current state of understanding about the response of C4 photosynthesis to water stress, including the interaction with elevated CO2 concentration. Major gaps in our knowledge in this area are identified and further required research is suggested.

Scope

Evidence indicates that C4 photosynthesis is highly sensitive to water stress. With declining leaf water status, CO2 assimilation rate and stomatal conductance decrease rapidly and photosynthesis goes through three successive phases. The initial, mainly stomatal phase, may or may not be detected as a decline in assimilation rates depending on environmental conditions. This is because the CO2-concentrating mechanism is capable of saturating C4 photosynthesis under relatively low intercellular CO2 concentrations. In addition, photorespired CO2 is likely to be refixed before escaping the bundle sheath. This is followed by a mixed stomatal and non-stomatal phase and, finally, a mainly non-stomatal phase. The main non-stomatal factors include reduced activity of photosynthetic enzymes; inhibition of nitrate assimilation, induction of early senescence, and changes to the leaf anatomy and ultrastructure. Results from the literature about CO2 enrichment indicate that when C4 plants experience drought in their natural environment, elevated CO2 concentration alleviates the effect of water stress on plant productivity indirectly via improved soil moisture and plant water status as a result of decreased stomatal conductance and reduced leaf transpiration.

Conclusions

It is suggested that there is a limited capacity for photorespiration or the Mehler reaction to act as significant alternative electron sinks under water stress in C4 photosynthesis. This may explain why C4 photosynthesis is equally or even more sensitive to water stress than its C3 counterpart in spite of the greater capacity and water use efficiency of the C4 photosynthetic pathway.Key words: C3 and C4 photosynthesis, stomatal and non-stomatal limitation, high CO2, water stress  相似文献   

10.
We report the effects of the root hemiparasite Striga hermonthica (Del.) Benth. on the growth and photosynthesis of two cultivars of sorghum: CSH-1, a susceptible variety, and Ochuti, which shows some tolerance to S. hermonthica in the field. Within 4 d of parasite attachment to the host roots, infected plants of both cultivars were significantly shorter than uninfected controls. At 55 d, infected plants of both cultivars had significantly less shoot and root biomass, and significantly smaller leaf areas than uninfected controls. The dry weight of S. hermonthica attached to host roots was insufficient at this stage to explain the decreased growth in terms of a competing sink for carbon and nitrogen. Leaf chlorophyll and nitrogen per unit area were greater in infected plants of both cultivars compared with control plants. However, whereas photosynthesis and transpiration in young leaves of infected CSH-1 plants declined with time when compared with controls, the rates in infected Ochuti plants were similar to those in uninfected controls throughout the time course of observation. In both cultivars, a strong correlation was observed between the rate of photosynthesis and stomatal conductance during photosynthetic induction, but infection resulted in a much slower induction than in controls. In CSH-1 plants, both steady-state photosynthesis and stomatal conductance were lower than in controls, whereas in leaves of Ochuti steady-state photosynthesis and stomatal conductance eventually reached the same values as in the control leaves. Results from AlCi analysis and also from determination of 13C isotope discrimination were consistent with a stomatal limitation to photosynthesis in the leaves of Striga-infected plants. The concentration of the plant growth regulator abscisic acid (ABA) was measured in the xylem sap of infected CSH-1 plants only, and was found to be twice that of uninfected plants. A possible role of ABA in determining host response to infection by S. hermonthica is discussed.  相似文献   

11.
The photosynthetic performance and related leaf traits of Incarvillea delavayi Bur. et Franch were studied at different water regimes to assess its capacity for photosynthetic acclimation to water stress. The initial response of I. delavayi to water stress was the closure of stomata, which resulted in down-regulation of photosynthesis. The stomatal limitation (SL) represented the main component to photosynthetic limitations but non-stomatal limitation (NSL) increased quickly with the increasing water stress, and had similar magnitude to SL under severe water stress (soil moisture 25–30 % of field capacity). Chlorophyll (Chl) a fluorescence parameters characterizing photosystem (PS) 2 photochemical efficiency (ΦPS2), electron transport rate (J) and photochemical quenching (qP) decreased with the increasing water stress, indicating impaired photosynthetic apparatus. However, the water-stressed plants had a increased mesophyll CO2 diffusional conductance, Chl a/b ratio, leaf nitrogen partitioning in RuBPCO and bioenergetics in later grown parts, indicating that I. delavay had a substantial physiological plasticity and showed a good tolerance to water stress.  相似文献   

12.
The effects of phosphate deficiency on the composition and photosyntheticCO2 assimilation rates of fully expanded leaves of sunflower,maize and wheat plants are described. The regulation of photosynthesisby stomatal and mesophyll characteristics of leaves of differentphosphate status is analysed and related to structure. Phosphatedeficient leaves had small concentrations of inorganic phosphate,Pi, in the tissue water. Rate of photosynthesis in leaves andstomatal conductance were smaller in plants grown with inadequatephosphate when measured under any given light intensity or CO2partial pressure. Despite the decrease in stomatal conductance(and without evidence of patchy stomatal closure), the relativestomatal limitation of photosynthesis was similar in the plantsgrown with deficient or abundant phosphate. However, the mesophyllcapacity for photosynthesis was greatly limited by phosphatedeficiency. Leaves deficient in phosphate had larger numbersof small size cells per unit leaf area than leaves with adequatephosphate. The total soluble protein content of leaves decreasedwith phosphate deficiency in all three species; however, theleaf chlorophyll content was decreased only in sunflower andmaize and not in wheat. These results suggest that stomatalconductance did not restrict the CO2 diffusion rate, ratherthe metabolism of the mesophyll was the limiting factor. Thisis shown by poor carboxylation efficiency and decreased apparentquantum yield for CO2 assimilation, both of which contributedto the increase in relative mesophyll limitation of photosynthesisin phosphate deficient plants. Key words: Apparent quantum yield, carboxylation efficiency, phosphate nutrition, photosynthesis, stomatal and mesophyll limitation  相似文献   

13.
Photosynthetic responses of intact leaves of the desert shrub Encelia farinosa were measured during a long term drought cycle in order to understand the responses of stomatal and nonstomatal components to water stress. Photosynthetic rate at high irradiance and leaf conductance to water vapor both decreased linearly with declining leaf water potential. The intercellular CO2 concentration (ci) remained fairly constant as a function of leaf water potential in plants subjected to a slow drought cycle of 25 days, but decreased in plants exposed to a 12-day drought cycle. With increasing water stress, the slope of the dependence of photosynthesis on ci (carboxylation efficiency) decreased, the maximum photosynthetic rates at high ci became saturated at lower values, and water use efficiency increased. Both the carboxylation efficiency and photosynthetic rates were positively correlated with leaf nitrogen content. Associated with lower leaf conductances, the calculated stomatal limitation to photosynthesis increased with water stress. However, because of simultaneous changes in the dependence of photosynthesis on ci with water stress, increased leaf conductance alone in water-stressed leaves would not result in an increase in photosynthetic rates to prestressed levels. Both active osmotic adjustment and changes in specific leaf mass occurred during the drought cycle. In response to increased water stress, leaf specific mass increased. However, the increases in specific leaf mass were associated with the production of a reflective pubescence and there were no changes in specific mass of the photosynthetic tissues. The significance of these responses for carbon gain and water loss under arid conditions are discussed.  相似文献   

14.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   

15.
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.  相似文献   

16.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

17.
The influence of long-term water deficit on photosynthesis, electron transport and carbon metabolism of sunflower leaves has been examined. Water deficit was imposed from flower bud formation up to the stage of full flowering in the field on two sunflower hybrids with different drought tolerance. CO2 assimilation and stomatal conductance of the intact leaves, determined at atmospheric CO2 and full sunlight (1500-2000 mol quanta m-2 s-1), decreased with water deficit. Maximum quantum efficiency of PSII (Fy/Fm) and relative quantum yield of PSII (II) determined under similar experimental conditions, did not change significantly in severely stressed leaves. The strong inhibition of the plateau region of the light response curve, determined at high CO2 (5%) in water-deficient sunflower leaves, indicates that photosynthesis is also limited by non-stomatal factors. The decreased slope and the plateau of the CO2 response curves show that the capacity of carboxylation and RuBP regeneration decreased in severely stressed intact leaves. Rubisco specific activity decreased in severely stressed leaves, but Rubisco content increased under prolonged drought. The increase of Rubisco content was significantly higher in leaves of the drought-tolerant sunflower hybrid indicating that a higher Rubisco content could be one factor in conferring better acclimation and higher drought tolerance.  相似文献   

18.
Hydroponically grown cucumber plants were exposed to 14-d period of salinity (0, 50, 100 mM NaCl). NaCl caused reduction in the relative water content in the leaves. The Na+ content increased and the K+ content decreased. The net photosynthetic rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Salinity decreased also the maximum quantum efficiency of photosystem 2 (PS 2) determined as the variable to maximum fluorescence ratio, the photochemical quantum yield of PS 2 and the photochemical fluorescence quenching, while the non-photochemical quenching increased. Above results indicate that NaCl affects photosynthesis through both stomata closure and non-stomatal factors.  相似文献   

19.
Photosynthesis was studied in relation to the carbohydrate status in intact leaves of the C4 plant Amaranthus edulis. The rate of leaf net CO2 assimilation, stomatal conductance and intercellular partial pressure of CO2 remained constant or showed little decline towards the end of an 8-h period of illumination in ambient air (340 bar CO2, 21% O2). When sucrose export from the leaf was inhibited by applying a 4-h cold-block treatment (1°C) to the petiole, the rate of photosynthesis rapidly decreased with time. After the removal of the cold block from the petiole, further reduction in photosynthetic rate occurred, and there was no recovery in the subsequent light period. Although stomatal conductance declined with time, intercellular CO2 partial pressure remained relatively constant, indicating that the inhibition of photosynthesis was not primarily caused by changes in stomatal aperture. Analysis of the leaf carbohydrate status showed a five- to sixfold increase in the soluble sugar fraction (mainly sucrose) in comparison with the untreated controls, whereas the starch content was the same. Leaf osmotic potential increased significantly with the accumulation of soluble sugars upon petiole chilling, and leaf water potential became slightly more negative. After 14 h recovery in the dark, photosynthesis returned to its initial maximum value within 1 h of illumination, and this was associated with a decline in leaf carbohydrate levels overnight. These data show that, in Amaranthus edulis, depression in photosynthesis when translocation is impaired is closely related to the accumulation of soluble sugars (sucrose) in source leaves, indicating feedback control of C4 photosynthesis. Possible mechanisms by which sucrose accumulation in the leaf may affect the rate of photosynthesis are discussed with regard to the leaf anatomy of C4 plants.Abbreviations and symbols A net CO2 assimilation rate - Ci intercellular CO2 partial pressure - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate - water potential - osmotic pressure  相似文献   

20.
Fully expanded leaves of tomato (Lycopersicon esculentum) growing with either complete or nitrogen-deficient nutrient solution were analysed for leaf water status, gas exchange and chlorophyll fluorescence during the vegetative and reproductive phases. N-deficiency did not affect leaf water relations but did decrease light saturated photosynthetic rate as well as stomatal conductance in the vegetative stage. A lower variable to maximum fluorescence ratio (Fv/Fm) was found in N-limited plants which also showed an increase in leaf starch content and in starch to sucrose ratio. The inhibition of photosynthesis and the alteration of photosynthates partitioning were responsible for the growth reduction in N-stressed plants. During the reproductive phase the limitation of photosynthesis may be due to a large accumulation of starch which determines both a decrease in the carbon demand from the sinks and a decrease in CO2 conductance in the mesophyll. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号