首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

2.
3.
BACKGROUND: Glucagon is a 29-residue peptide produced in the alpha cells of the pancreas that interacts with hepatic receptors to stimulate glucose production and release, via a cAMP-mediated pathway. Type 2 diabetes patients may have an excess of glucagon and, as such, glucagon antagonists might serve as diabetes drugs. The antagonists that bind to the glucagon receptor but do not exhibit activity could be analogs of glucagon. The presence of salt bridges between some residues of glucagons (such as aspartic acid) and others (such as lysine) might influence both the binding to the receptor and the activity. MATERIALS AND METHODS: Experimental-The solid phase method with 4-methylbenzilhydrilamine resin (p-MBHA resin) was used for the synthesis of glucagon analogs. Rat liver membranes were prepared from male Sprague-Dawley rats by the Neville procedure. The receptor binding essay was performed in 1% BSA, 1 mM dithiothreitol, 25 mM Tris-HCl buffer, pH 7.2. Adenyl cyclase activity was measured in an assay medium containing 1% serum albumin, 25 mM MgCl2, 2 mM dithiothreitol, 0.025 mM GTP, 5 mM ATP, 0.9 mM theophylline, 17.2 mM creatine phosphate, and 1 mg/ml creatine phosphokinase. Theoretical-Quantum chemical calculations using the Titan program with the 6-31G* basis set were performed to calculate the binding energies of salt bridges between aspartic or glutamic acids and lysine. The relative stability of cyclic conformations of glucagon segments versus the extended segments was determined. RESULTS: It was found that the cyclic Glu9-Lys12 amide compound displayed a 20-fold decrease in binding affinity. DesHis1 cyclic compounds Glu20-Lys24 amide and DesHis1Glu9 Glu20-Lys24 amide behave as glucagon antagonists. The calculations show that cyclic conformations of tetrapeptidic and pentapeptidic segments of glucagon are more stable than the extended species. CONCLUSIONS: The biological data and the theoretical calculations show that an intramolecular salt bridge might impart stability to some glucagon antagonists and, when situated at the C-terminus of glucagon, might facilitate induction of an alpha-helix upon initial hormone association with the membrane bilayer. These findings might be a useful tool for the design of new glucagon antagonists.  相似文献   

4.
Glucagon binding to and recognition by its cell surface receptor is the necessary first step in the cascade of events leading to the activation of adenylate cyclase by the hormone. It has long been presumed that glucagon adopts an ordered conformation upon binding to its membrane-bound receptor. A recent model of this three-dimensional structure based on biophysical data, predicts beta-turns at positions 2-5, 10-13, and 15-18, and an alpha-helical region between residues 19-27. Our approach in the design of antagonists of glucagon was to elucidate the steric and electronic features that stabilize these secondary structures to obtain analogs that bind with high affinity to the receptor but do not activate adenylate cyclase. Nineteen glucagon analogs incorporating structural changes at the amino-terminal sequence 1-5, at positions 9 and 12, and at the carboxyl-terminal helical region were synthesized. Des-His1-[Glu9]glucagon amide was recently shown to be a competitive inhibitor. Our synthetic studies in combination with this modification have resulted in seven new glucagon antagonists. The implications for the structural and conformational properties required for binding and activity of glucagon and the glucagon peptide family are discussed.  相似文献   

5.
Ying J  Ahn JM  Jacobsen NE  Brown MF  Hruby VJ 《Biochemistry》2003,42(10):2825-2835
Glucagon, a 29-residue peptide hormone, plays an important role in glucose homeostasis and in diabetes mellitus. Several glucagon antagonists and agonists have been developed, but limited structural information is available to clarify the basis of their biological activity. The solution structure of the potent glucagon antagonist, [desHis1, desPhe6, Glu9]glucagon amide, was determined by homonuclear 2D NMR spectroscopy at pH 6.0 and 37 degrees C in perdeuterated dodecylphosphocholine micelles. The overall backbone root-mean-square deviation (rmsd) for the structured portion (residues 7-29, glucagon numbering) of the micelle-bound 27-residue peptide is 1.36 A for the 15 lowest-energy structures, after restrained molecular dynamics simulation. The structure consists of four regions (segment backbone rmsd in A): an unstructured N-terminal segment between residues 2 and 5 (1.68), an irregular helix between residues 7 and 14 (0.79), a hinge region between residues 15 and 18 (0.54), and a well-defined alpha-helix between residues 19 and 29 (0.33). The two helices form an L-shaped structure with an angle of about 90 degrees between the helix axes. There is an extended hydrophobic cluster, which runs along the inner surface of the L-structure and incorporates the side chains of the hydrophobic residues of each of the amphipathic helices. The outer surface contains the hydrophilic side chains, with two salt bridges (D15-R18 and R17-D21) implied from close approach of the charged groups. This result is the first clear indication of an overall tertiary fold for a glucagon analogue in the micelle-bound state. The relationship of the two helical structural elements may have important implications for the biological activity of the glucagon antagonist.  相似文献   

6.
In an effort to find analogs of glucagon that would bind to the glucagon receptor of the rat liver membrane but would not activate membrane-bound adenyl cyclase, several hybrid molecules were synthesized which contained sequences from both glucagon and secretin. [Asp3, Glu9]Glucagon and [Asp3, Glu9, Arg12]glucagon were inactive in the adenyl cyclase assay even at high concentrations but retained some binding affinity for the receptor. They were able to displace 125I-glucagon completely from its receptor and could completely inhibit the activation of adenyl cyclase by natural or synthetic glucagon. The inhibition index [I/A]50 was approximately 110 for both analogs. [Asp3]Glucagon, [Glu3]glucagon and [Asp3, Lys17, 18, Glu21]glucagon were weak partial agonists, while [Asp3, Glu21]glucagon was inactive and a poor inhibitor. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C18 silica columns. These are the first fully synthetic competitive glucagon antagonists to be reported.  相似文献   

7.
Recent studies on the glucagon antagonist des-His1-[Glu9]glucagon amide have resulted in pure inhibitors of the hormone, suggesting that the inhibitory properties may be centered around position 9. The present study was designed to investigate the chemical characteristics of substitutions in position 9 of glucagon that determine binding affinity and biological activity. Twenty replacement analogs of position 9 of glucagon were synthesized and assessed for their ability to bind to the glucagon receptor in rat hepatocyte membranes and to activate adenylate cyclase. Any substitution of aspartic acid 9 was accompanied by a severely diminished capacity to transmit the biological signal, while retaining receptor binding affinity. These results are an indication of an uncoupling of receptor binding and biological activity at this locus and define a central role of aspartic acid 9 in glucagon activity. Single replacement or deletion of either His1 or Asp9 in glucagon caused a 20- to 50-fold decrease in cyclase activity, whereas these same changes made in tandem caused virtually complete loss of activity, with decreases of 10(4)-to 10(6)-fold. These observations have led us to speculate that, at the molecular level, the region of glucagon required for transduction of the biological response may be distinct from the binding region and is mediated by a coupled interaction between His1 and Asp9 of the hormone and a complementary functional site of the glucagon receptor.  相似文献   

8.
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To analyze functional differences in the interactions of the glucagon receptor (GR) with the two predominant splice variants of Galpha(s), GR was covalently linked to the short and the long forms Galpha(s)-S and Galpha(s)-L to produce the fusion proteins GR-Galpha(s)-S and GR-Galpha(s)-L. GR-Galpha(s)-S bound glucagon with an affinity similar to that of GR, while GR-Galpha(s)-L showed a 10-fold higher affinity for glucagon. In the presence of GTPgammaS, GR-Galpha(s)-L reverted to the low affinity glucagon binding conformation. Both GR-Galpha(s)-L and GR-Galpha(s)-S were constitutively active, causing elevated basal levels of cAMP even in the absence of glucagon. A mutant GR that failed to activate G(s) (G23D1R) was fused to Galpha(s)-L. G23D1R-Galpha(s)-L bound glucagon with high affinity, but failed to elevate cAMP levels, suggesting that the mechanisms of GR-mediated Galpha(s)-L activation and Galpha(s)-L-induced high affinity glucagon binding are independent. Both GR-Galpha(s)-S and GR-Galpha(s)-L bound the antagonist desHis(1)[Nle(9),Ala(11),Ala(16)]glucagon amide with affinities similar to GR. The antagonist displayed partial agonist activity with GR-Galpha(s)-L, but not with GR-Galpha(s)-S. Therefore, the partial agonist activity of the antagonist observed in intact cells appears to be due to GRs coupled to Galpha(s)-L. We conclude that Galpha(s)-S and Galpha(s)-L interact differently with GR and that specific coupling of GR to Galpha(s)-L may account for GTP-sensitive high affinity glucagon binding.  相似文献   

10.
Eleven new analogues were synthesized by modification of the potent oxytocin antagonist (OTA) [(S)Pmp(1), D-Trp(2), Pen(6), Arg(8)]-Oxytocin, or PA (parent antagonist), in which (S)Pmp = beta,beta-(3-thiapentamethylene)-beta-mercapto-propionic acid. By internal acylation of Lys, Orn, L-1,4-diaminobutyric acid (Dab), L-1,3-diaminopropionic acid (Dap) at position 4 with the C-terminal Gly of the peptide tail, we prepared cyclo-(4-9)-[Lys(4), Gly(9)]-PA (pA(2) = 8.77 +/- 0.27), 1, and cyclo-(4-9)-[Orn(4), Gly(9)]-PA (pA(2) = 8.81 +/- 0.25), 3, which are equipotent with PA (pA(2) = 8.68 +/- 0.18) in the rat uterotonic assay and cyclo-(4-9)-[Dab(4), Gly(9)]-PA, 4, cyclo-(4-9)-[Dap(4), Gly(9)]-PA, 5, and cyclo-(4-9)-[Pmp(1), Lys(4), Gly(9)]-PA, 2, which were weaker OTAs. Neither 1 nor 3 had activity as agonists or antagonists in the antidiuretic assay. In the pressor assay, both analogues 1 and 3, with pA(2) = 7.05 +/- 0.10 and pA(2) = 6.77 +/- 0.12, respectively, are somewhat weaker antagonists than PA (pA(2) = 7.47 +/- 0.35) showing significant gain in specificity. The [desamido(9)] PA-ethylenediamine monoamide, 6, and the dimer ([desamido(9)]-PA)(2) ethylenediamine diamide, 7, had lower potency in the uterotonic assay than PA. Additionally, we synthesized cyclo-(1-5)-[(HN)Pmp(1), Asp(5)]-PA, 8, inactive in all tests, which suggests that the intact Asn(5) side chain may be critical in the interaction of the OTAs with the oxytocin (OT) receptor. Similarly, cyclo-(5-9)-[Dap(5), Gly(9)]-PA, 9, had very low uterotonic potency. Two derivatives of PA truncated from the C-terminus were internally cyclized to Lys(4), giving rise to cyclo-(4-8)-desGly-NH(2)(9)[Lys(4), Arg(8)]-PA, 10 (pA(2) = 8.35 +/- 0.20), which maintains the high potency of PA and has no activity in the rat antidiuretic assay, and in the rat pressor assay it is about ten times weaker (pA2 = 6.41 +/- 0.15) than PA (pA2 = 7.47 +/- 0.35), thus showing gains in specificity, and to cyclo-(4-7)-desArg-Gly-(NH)(2)(8-9)[Lys(4), Pro(7))-PA, 11, which has much weaker potency than PA. Synthesis of cyclo-(4-6)-desPro-Arg-Gly-(NH)(2)(7-9)[Lys(4)]-PA failed.  相似文献   

11.
Binding activity of [3H]thienylcyclohexylpiperidine was examined using rat brain synaptic membranes treated with Triton X-100. This compound is proposed to be a noncompetitive antagonist for the N-methyl-D-aspartate (NMDA)-sensitive subclass of brain excitatory amino acid receptors. The activity decreased in proportion to increasing concentrations of the detergent up to 0.08%. In vitro addition of L-glutamate (Glu) partially restored the decreased activity caused by this Triton treatment, whereas further addition of glycine (Gly) entirely reversed the loss of activity to the level found in membranes extensively washed but not treated with a detergent. These stimulatory effects were found to be due to the acceleration of the association of ligand. The rank order of potentiation of the activity coincided well with that of the affinity for the NMDA-sensitive subclass among numerous Glu analogs. The potentiation by Gly as well as Glu was invariably prevented by competitive NMDA antagonists, such as DL-2-amino-5-phosphonovalerate and (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate, but not by strychnine. No significant difference was observed between pharmacological profiles of the activities in synaptic membranes treated and not treated with Triton X-100, except haloperidol. The potency of this sigma-ligand to inhibit the activity was greatly reduced by the Triton treatment in the presence of both Glu and Gly. These results suggest that the regulatory properties of Triton-treated synaptic membranes remain unchanged in terms of the interaction within the NMDA receptor complex.  相似文献   

12.
Recent investigations have demonstrated a modulatory action of glucagon on shivering via the central nervous system in ducklings. Such an action could be mediated by glucagon receptors that have been recently detected in several brain areas involved in the central control of the involuntary motricity in this avian species. The present study using des-His1 (Glu9) glucagon amide, was performed to investigate the central mechanisms of glucagon on shivering. This glucagon analog was found to be an antagonist of glucagon devoid of adenylate cyclase activity (GR2) by triggering the breakdown of inositol phosphate (GR1) in mammals hepatocytes. The intracerebroventricular administration of des-His1 (Glu9) glucagon amide or glucagon induced a marked inhibition of shivering in ducklings exposed to cold. It seems likely that GR1 receptors contribute to decreased shivering in ducklings exposed to cold. Central glucagon or des-His1 (Glu9) glucagon amide were devoid of thermogenic effect at thermoneutrality.  相似文献   

13.
14.
Vasopressin antagonist analogs having alanine or glycine at position 7 were essentially equipotent with analogs with proline, N-methylalanine or sarcosine at position 7. This demonstrates that the conformational constraint imposed by an N-alkyl residue at position 7 is not necessary for binding of antagonist to the receptor, the exact opposite of what is seen in agonists. This suggests that antagonists bind to the receptor in a manner which is very different from that of agonists.  相似文献   

15.
Amino acid determinants for NMDA receptor inhibition by conantokin-T   总被引:3,自引:0,他引:3  
Several derivatives of conantokin-T (con-T), a naturally occurring, gamma-carboxyglutamate (Gla)-containing peptide with NMDA receptor (NMDAR) antagonist properties, were synthesized and evaluated for their ability to displace [(3)H]MK-801 from adult rat forebrain membranes. Analyses of progressive C-terminal truncation analogs of the parent 21-mer revealed gradual losses in activity with decreased chain length. In this series, con-T[1-8] was identified as the shortest variant capable of manifesting inhibitory activity (< 1% of the parent peptide). Ala substitution studies of individual residues identified Gly1, Gla3, Met8 and Leu12 as important for activity, while Glu2, Gla4 and Tyr5 were shown to be essential in this regard. The effect of side-chain length and charge in the N-terminal region was probed by single amino acid replacements. No correlation was observed between potencies and circular dichroism-derived helical contents of the con-T derivatives. Further elaboration of structure-function relationships in con-T was effected through the design and synthesis of helically constrained and destabilized analogs. The results of the current study were compared with those of a previous investigation on con-G, a related conantokin. Substantial differences in activity requirements were noted between the peptides, particularly in the C-terminal regions. Chimeras of con-T and con-G were generated and revealed virtually no interchangeability of residues between these two peptides. Finally, single amino acid substitutions that resulted in analogs with enhanced inhibitory properties were combined to yield superior conantokin-based NMDAR inhibitors.  相似文献   

16.
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.  相似文献   

17.
To assess glucagon receptor compartmentalization and signal transduction in liver parenchyma, we have studied the functional relationship between glucagon receptor endocytosis, phosphorylation and coupling to the adenylate cyclase system. Following administration of a saturating dose of glucagon to rats, a rapid internalization of glucagon receptor was observed coincident with its serine phosphorylation both at the plasma membrane and within endosomes. Co-incident with glucagon receptor endocytosis, a massive internalization of both the 45- and 47-kDa Gsalpha proteins was also observed. In contrast, no change in the subcellular distribution of adenylate cyclase or beta-arrestin 1 and 2 was observed. In response to des-His(1)-[Glu(9)]glucagon amide, a glucagon receptor antagonist, the extent and rate of glucagon receptor endocytosis and Gsalpha shift were markedly reduced compared with wild-type glucagon. However, while the glucagon analog exhibited a wild-type affinity for endosomal acidic glucagonase activity and was processed at low pH with similar kinetics and rates, its proteolysis at neutral pH was 3-fold lower. In response to tetraiodoglucagon, a glucagon receptor agonist of enhanced biological potency, glucagon receptor endocytosis and Gsalpha shift were of higher magnitude and of longer duration, and a marked and prolonged activation of adenylate cyclase both at the plasma membrane and in endosomes was observed. The subsequent post-endosomal fate of internalized Gsalpha was evaluated in a cell-free rat liver endosome-lysosome fusion system following glucagon injection. A sustained endo-lysosomal transfer of the two 45- and 47-kDa Gsalpha isoforms was observed. Therefore, these results reveal that within hepatic target cells and consequent to glucagon-mediated internalization of the serine-phosphorylated glucagon receptor and the Gsalpha protein, extended signal transduction may occur in vivo at the locus of the endo-lysosomal apparatus.  相似文献   

18.
Neurotensin(8-13) analogs containing a glycine or 5-aminovaleroyl spacer were labeled with fluorescein through formation of an N-terminal thiourea function. The receptor binding was measured in HT-29 cell cultures and showed a substantial decrease in affinity, especially for the metabolically stabilized [MeArg(9), Tle(11)] analog. Using fluorescence microscopy, the internalization of the fluorescent neurotensin analogs into HT-29 cells was observed.  相似文献   

19.
The crystal structures of the ligand-binding core of the agonist complexes of the glutamate receptor-B (GluR-B) subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptor indicate that the distal anionic group of agonist molecules are stabilized by interactions with an N-terminal region of an alpha-helix (helix F) in the lobe 2 ("domain 2," Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181) of the two-lobed ligand-binding domain. We used site-directed mutagenesis to further analyze the role of this region in the recognition of both agonists and antagonists by the AMPA receptor. Wild-type and mutated versions of the ligand-binding domain of GluR-D were expressed in insect cells as secreted soluble polypeptides and subjected to binding assays using [(3)H]AMPA, an agonist, and [(3)H]Ro 48-8587 (9-imidazol-1-yl-8-nitro-2,3,5,6-tetrahydro[1,2,4]triazolo[1,5-c] quinazoline-2,5-dione), a high affinity AMPA receptor antagonist, as radioligands. Single alanine substitutions at residues Leu-672 and Thr-677 severely affected the affinities for all agonists, as seen in ligand competition assays, whereas similar mutations at residues Asp-673, Ser-674, Gly-675, Ser-676, and Lys-678 selectively affected the binding affinities of one or two of the agonists. In striking contrast, the binding affinities of [(3)H]Ro 48-8587 and of another competitive antagonist, 6,7-dinitroquinoxaline-2,3-dione, were not affected by any of these alanine mutations, suggesting the absence of critical side-chain interactions. Together with ligand docking experiments, our results indicate a selective engagement of the side chains of the helix F region in agonist binding, and suggest that conformational changes involving this region may play a critical role in receptor activation.  相似文献   

20.
The effects of a cerebral anti-ischemic drug ifenprodil on the receptor ionophore complex of an N-methyl-D-aspartate (NMDA)-sensitive subclass of central excitatory amino acid receptors were examined using [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10- imine (MK-801) binding in rat brain synaptic membrane preparations as a biochemical measure. The binding in membrane preparations not extensively washed was markedly inhibited not only by competitive NMDA antagonists such as (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic, D-2-amino-5-phosphonovaleric and D-2-amino-7-phosphonoheptanoic acids, but also by competitive antagonists at the strychnine-insensitive glycine (Gly) site including 7-chlorokynurenic acid and 6,7-dichloroquinoxaline-2,3-dione. Among several proposed ligands for alpha-adrenergic receptors tested, ifenprodil most potently inhibited the binding in these membrane preparations due to a decrease in the density of the binding sites without significantly affecting the affinity. Ifenprodil also inhibited the binding of [3H]N-[1-(2-thienyl)cyclohexyl]piperidine as well as of [3H]MK-801 to open NMDA channels in a concentration-dependent manner at concentrations above 10 nM in membrane preparations extensively washed but not treated by a detergent, with a Hill coefficient of less than unity. Further treatment of extensively washed membrane preparations with a low concentration of Triton X-100 resulted in an almost complete abolition of [3H]MK-801 binding, and the binding was restored to the level found in membrane preparations not extensively washed following the addition of both L-glutamic acid (Glu) and Gly. Ifenprodil was effective in inhibiting [3H]MK-801 binding via reducing both initial association and dissociation rates in Triton-treated membrane preparations, irrespective of the presence of Glu and Gly added. The binding in Triton-treated membrane preparations was additionally potentiated by the polyamine spermidine in a concentration-dependent manner at concentrations above 10 microM in the presence of both Glu and Gly at maximally effective concentrations. Ifenprodil invariably diminished the abilities of these three stimulants to potentiate [3H]MK-801 binding at concentrations over 1 microM in a manner that the maximal responses each were reduced. These results suggest that ifenprodil does not interfere with the NMDA receptor complex as a specific isosteric antagonist at the polyamine domain in contrast to the prevailing view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号