首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF-beta has been shown to be critical in the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-beta, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4(+)CD25(+) Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-beta1-transgenic (Tg) mouse in which TGF-beta is linked to the IL-2 promoter and T cells transiently overexpress TGF-beta upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-gamma. Naive TGF-beta-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+)CD25(-) T cells from TGF-beta Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25(+) and CD25(-) populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25(+/-) T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-beta on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-beta dependent as anti-TGF-beta abrogated their development. Thus, Ag-specific TGF-beta-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3(+) regulatory cells in the periphery.  相似文献   

2.
Previously we reported that TGF-beta has an important role in the generation and expansion of human "professional" CD4(+)CD25(+) regulatory T cells in the periphery that have a cytokine-independent mechanism of action. In this study we used low-dose staphylococcal enterotoxin to induce T cell-dependent Ab production. We report that TGF-beta induces activated CD4(+)CD25(-) T cells to become Th3 suppressor cells. While stimulating CD4(+) cells with TGF-beta modestly increased expression of CD25 and intracellular CTLA-4 in primary cultures, upon secondary stimulation without TGF-beta the total number and those expressing these markers dramatically increased. This expansion was due to both increased proliferation and protection of these cells from activation-induced apoptosis. Moreover, adding as few as 1% of these TGF-beta-primed CD4(+) T cells to fresh CD4(+) cells and B cells markedly suppressed IgG production. The inhibitory effect was mediated by TGF-beta and was also partially contact dependent. Increased TGF-beta production was associated with a decreased production of IFN-gamma and IL-10. Depletion studies revealed that the precursors of these TGF-beta-producing CD4(+) suppressor cells were CD25 negative. These studies provide evidence that CD4(+)CD25(+) regulatory cells in human blood consist of at least two subsets that have TGF-beta-dependent and independent mechanisms of action. TGF-beta has an essential role in the generation of both of these T suppressor cell subsets from peripheral T cells. The ability to induce CD4(+) and CD8(+) cells to become regulatory cells ex vivo has the potential to be useful in the treatment of autoimmune diseases and to prevent transplant rejection.  相似文献   

3.
Recent studies have shown that TGF-beta together with IL-6 induce the differentiation of IL-17-producing T cells (Th17) T cells. We therefore examined whether CD4(+)CD25(+)Foxp3(+) regulatory T cells, i.e., cells previously shown to produce TGF-beta, serve as Th17 inducers. We found that upon activation purified CD25(+) T cells (or sorted GFP(+) T cells obtained from Foxp3-GFP knockin mice) produce high amounts of soluble TGF-beta and when cultured with CD4(+)CD25(-)Foxp3(-) T cells in the presence of IL-6 induce the latter to differentiate into Th17 cells. Perhaps more importantly, upon activation, CD4(+)CD25(+)Foxp3(+)(GFP(+)) T cells themselves differentiate into Th17 cells in the presence of IL-6 (and in the absence of exogenous TGF-beta). These results indicate that CD4(+)CD25(+)Foxp3(+) regulatory T cells can function as inducers of Th17 cells and can differentiate into Th17 cells. They thus have important implications to our understanding of regulatory T cell function and their possible therapeutic use.  相似文献   

4.
IL-17-secreting T (Th17) cells play a protective role in certain bacterial infections, but they are major mediators of inflammation and are pathogenic in organ-specific autoimmune diseases. However, human Th17 cells appear to be resistant to suppression by CD4(+)CD25(+)FoxP3(+) regulatory T cells, suggesting that they may be regulated by alternative mechanisms. Herein we show that IL-10 and TGF-beta suppressed IL-17 production by anti-CD3-stimulated PBMC from normal individuals. TGF-beta also suppressed IL-17 production by purified CD4(+) T cells, whereas the inhibitory effect of IL-10 on IL-17 production appears to be mediated predominantly by its effect on APC. An examination of patients infected with hepatitis C virus (HCV) demonstrated that Ag-specific Th17 cells are induced during infection and that these cells are regulated by IL-10 and TGF-beta. PBMC from HCV Ab-positive donors secreted IL-17, IFN-gamma, IL-10, and TGF-beta in response to stimulation with the HCV nonstructural protein 4 (NS4). Furthermore, NS4 induced innate TGF-beta and IL-10 expression by monocytes from normal donors and at higher levels from HCV-infected patients. Neutralization of TGF-beta, and to a lesser extent IL-10, significantly enhanced NS4-specific IL-17 and IFN-gamma production by T cells from HCV-infected donors. Our findings suggest that both HCV-specific Th1 and Th17 cells are suppressed by NS4-induced production of the innate anti-inflammatory cytokines IL-10 and TGF-beta. This may represent a novel immune subversion mechanism by the virus to evade host-protective immune responses. Our findings also suggest that TGF-beta and IL-10 play important roles in constraining the function of Th17 cells in general.  相似文献   

5.
TGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation. TGF-beta1 inhibited the development of IFN-gamma-expressing cells in a dose-dependent fashion and in the absence of APC, indicating that TGF-beta1 can inhibit Th1 development by acting directly on the CD4(+) T cell. During priming, TGF-beta1 strongly inhibited the expression of both T-bet (T box expressed in T cells) and Stat4. We evaluated the importance of these two molecules in the suppression of IFN-gamma expression at the two phases of Th1 responses. Enforced expression of T-bet by retrovirus prevented TGF-beta1's inhibition of Th1 development, but did not prevent TGF-beta1's inhibition of IFN-gamma expression at priming. Conversely, enforced expression of Stat4 partly prevented TGF-beta1's inhibition of IFN-gamma expression during priming, but did not prevent TGF-beta1's inhibition of Th1 development. These data show that TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall.  相似文献   

6.
Dendritic cells (DCs) induce immunity and immunological tolerance as APCs. It has been shown that DCs secreting IL-10 induce IL-10(+) Tr1-type regulatory T (Treg) cells, whereas Foxp3-positive Treg cells are expanded from naive CD4(+) T cells by coculturing with mature DCs. However, the regulatory mechanism of expansion of Foxp3(+) Treg cells by DCs has not been clarified. In this study, we demonstrated that suppressors of cytokine signaling (SOCS)-3-deficient DCs have a strong potential as Foxp3(+) T cell-inducing tolerogenic DCs. SOCS3(-/-) DCs expressed lower levels of class II MHC, CD40, CD86, and IL-12 than wild-type (WT)-DCs both in vitro and in vivo, and showed constitutive activation of STAT3. Foxp3(-) effector T cells were predominantly expanded by the priming with WT-DCs, whereas Foxp3(+) Treg cells were selectively expanded by SOCS3(-/-) DCs. Adoptive transfer of SOCS3(-/-) DCs reduced the severity of experimental autoimmune encephalomyelitis. Foxp3(+) T cell expansion was blocked by anti-TGF-beta Ab, and SOCS3(-/-) DCs produced higher levels of TGF-beta than WT-DCs, suggesting that TGF-beta plays an essential role in the expansion of Foxp3(+) Treg cells. These results indicate an important role of SOCS3 in determining on immunity or tolerance by DCs.  相似文献   

7.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

8.
Autoantigen administration via nasal mucosal tissue can induce systemic tolerance more effectively than oral administration in a number of experimental autoimmune diseases, including Ab-mediated experimental autoimmune myasthenia gravis, a murine model of myasthenia gravis. The mechanisms underlying nasal tolerance induction are not clear. In this study, we show that nasal administration of acetylcholine receptor (AChR) in C57BL/6 mice, before immunizations with AChR in adjuvant, results in delayed onset and reduced muscle weakness compared with control mice. The delayed onset and reduced muscle weakness were associated with decreased AChR-specific lymphocyte proliferation and decreased levels of anti-AChR Abs of the IgG2a and IgG2b isotypes in serum. The clinical and immunological changes in the AChR-pretreated C57BL/6 wild-type (wt) mice were comparable with those observed in AChR-pretreated CD8-/- mice, indicating that CD8+ T cells were not required for the generation of nasal tolerance. AChR-pretreated wt and CD8-/- mice showed augmented TGF-beta and reduced IFN-gamma responses, whereas levels of IL-4 were unaltered. Splenocytes from AChR-pretreated wt and CD8-/- mice, but not from CD4-/- mice, suppressed AChR-specific lymphocyte proliferation. This suppression could be blocked by Abs against TGF-beta. Thus, our results demonstrate that the suppression induced in the present model is independent of CD8+ T cells and suggest the involvement of Ag-specific CD4+ Th3 cells producing TGF-beta.  相似文献   

9.
Thymus-derived, natural CD4(+)CD25(+) regulatory T cells can educate peripheral CD4(+)CD25(-) cells to develop suppressive activity by poorly understood mechanisms. TGF-beta has IL-2-dependent costimulatory effects on alloactivated naive, human CD4(+) T cells and induces them ex vivo to become potent contact-dependent, cytokine-independent suppressor cells. In this study, we report that CD4(+)CD25(+) cells are the targets of the costimulatory effects of IL-2 and TGF-beta. These cells do not divide, but, instead, greatly increase the numbers of CD4(+)CD25(-) cells that become CD25(+) cytokine-independent suppressor cells. These CD4(+)CD25(+) regulatory cells, in turn, induce other alloactivated CD4(+)CD25(-) cells to become potent suppressor cells by mechanisms that, surprisingly, require both cell contact and TGF-beta and IL-10. The suppressive effects of these secondary CD4(+)CD25(+) cells depend upon TGF-beta and IL-10. Moreover, both the naive CD4(+) cells induced by IL-2 and TGF-beta to become suppressor cells, and the subsequent CD4(+)CD25(-) cells educated by them to become suppressors express FoxP3. We suggest that the long-term effects of adoptively transferred natural-like CD4(+)CD25(+) regulatory cells induced ex vivo are due to their ability to generate new cytokine-producing CD4(+) regulatory T cells in vivo.  相似文献   

10.
11.
Mucosal tolerance induction generally requires multiple or large Ag doses. Because microfold (M) cells have been implicated as being important for mucosal tolerance induction and because reovirus attachment protein sigma1 (psigma1) is capable of binding M cells, we postulated that targeting a model Ag to M cells via psigma1 could induce a state of unresponsiveness. Accordingly, a genetic fusion between OVA and the M cell ligand, reovirus psigma1, termed OVA-psigma1, was developed to enhance tolerogen uptake. When applied nasally, not parenterally, as little as a single dose of OVA-psigma1 failed to induce OVA-specific Abs even in the presence of adjuvant. Moreover, the mice remained unresponsive to peripheral OVA challenge, unlike mice given multiple nasal OVA doses that rendered them responsive to OVA. The observed unresponsiveness to OVA-psigma1 could be adoptively transferred using cervical lymph node CD4(+) T cells, which failed to undergo proliferative or delayed-type hypersensitivity responses in recipients. To discern the cytokines responsible as a mechanism for this unresponsiveness, restimulation assays revealed increased production of regulatory cytokines, IL-4, IL-10, and TGF-beta1, with greatly reduced IL-17 and IFN-gamma. The induced IL-10 was derived predominantly from FoxP3(+)CD25(+)CD4(+) T cells. No FoxP3(+)CD25(+)CD4(+) T cells were induced in OVA-psigma1-dosed IL-10-deficient (IL-10(-/-)) mice, and despite showing increased TGF-beta1 synthesis, these mice were responsive to OVA. These data demonstrate the feasibility of using psigma1 as a mucosal delivery platform specifically for low-dose tolerance induction.  相似文献   

12.
Induction of oral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases, including rheumatoid arthritis (RA). Oral administration of type II collagen (CII) has been proven to improve signs and symptoms in RA patients without troublesome toxicity. To investigate the mechanism of immune suppression mediated by orally administered antigen, we examined changes in serum IgG subtypes and T-cell proliferative responses to CII, and generation of IL-10-producing CD4+CD25+ T-cell subsets in an animal model of collagen-induced arthritis (CIA). We found that joint inflammation in CIA mice peaked at 5 weeks after primary immunization with CII, which was significantly less in mice tolerized by repeated oral feeding of CII before CIA induction. Mice that had been fed with CII also exhibited increased serum IgG1 and decreased serum IgG2a as compared with nontolerized CIA animals. The T-cell proliferative response to CII was suppressed in lymph nodes of tolerized mice also. Production of IL-10 and of transforming growth factor-beta from mononuclear lymphocytes was increased in the tolerized animals, and CD4+ T cells isolated from tolerized mice did not respond with induction of IFN-gamma when stimulated in vitro with CII. We also observed greater induction of IL-10-producing CD4+CD25+ subsets among CII-stimulated splenic T cells from tolerized mice. These data suggest that when these IL-10-producing CD4+CD25+ T cells encounter CII antigen in affected joints they become activated to exert an anti-inflammatory effect.  相似文献   

13.
14.
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.  相似文献   

15.
An in vitro immunization (IVI) protocol enables antigen specific antibody production from L-Leucyl-L-Leucine methyl ester (LLME)-treated human peripheral blood lymphocytes (PBL) upon antigen stimulation in the presence of IL-2, IL-4, and muramyl dipeptide. In the course of our studies, we have found that IL-10 added at the antigen sensitization significantly augmented antibody production level from the LLME-treated PBL. In the present study, we tried to demonstrate the role of IL-10 in the augmentation of antibody production in an IVI protocol by clarifying the cytokine expression profiles in CD4(+) and CD8(+) T cells. The results showed that IL-10 skewed the Th1/Th2 balance to Th2-type responses by suppressing Th1-type cytokine production and augmenting Th2-type cytokine production in CD4(+) and CD8(+) T cells, as well as in CD19(+) B cells. Furthermore, IL-10 augmented the expression of CD38, an antigen marker of plasma cells, on B cells, which clearly indicates that IL-10 promoted differentiation and maturation of B cells in an IVI protocol. These results indicate that IL-10 plays an important role in setting the cellular milieu to produce antibodies in an IVI protocol.  相似文献   

16.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

17.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

18.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   

19.
20.
We recently demonstrated that oral or nasal administration of recombinant fragments of the acetylcholine receptor (AChR) prevents the induction of experimental autoimmune myasthenia gravis (EAMG) and suppresses ongoing EAMG in rats. We have now studied the role of spatial conformation of these recombinant fragments in determining their tolerogenicity. Two fragments corresponding to the extracellular domain of the human AChR alpha-subunit and differing in conformation were tested: Halpha1-205 expressed with no fusion partner and Halpha1-210 fused to thioredoxin (Trx), and designated Trx-Halpha1-210. The conformational similarity of the fragments to intact AChR was assessed by their reactivity with alpha-bungarotoxin and with anti-AChR mAbs, specific for conformation-dependent epitopes. Oral administration of the more native fragment, Trx-Halpha1-210, at the acute phase of disease led to exacerbation of EAMG, accompanied by an elevation of AChR-specific humoral and cellular reactivity, increased levels of Th1-type cytokines (IL-2, IL-12), decreased levels of Th2 (IL-10)- or Th3 (TGF-beta)-type cytokines, and higher expression of costimulatory factors (CD28, CTLA4, B7-1, B7-2, CD40L, and CD40). On the other hand, oral administration of the less native fragments Halpha1-205 or denatured Trx-Halpha1-210 suppressed ongoing EAMG and led to opposite changes in the immunological parameters. It thus seems that native conformation of AChR-derived fragments renders them immunogenic and immunopathogenic and therefore not suitable for treatment of myasthenia gravis. Conformation of tolerogens should therefore be given careful attention when considering oral tolerance for treatment of autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号