首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the changes in soil microbial biomass C (MBC), microbial biomass N (MBN) and N mineralization in Sasa kurilensis-present (SP) and S. kurilensis-removed (SR) stands in a Betula ermanii forest. The mean levels of MBC and MBN were significantly higher in the SR stand than in the SP, which may have positively influenced the N-mineralization rate as depicted by a significant positive correlation between these variables and the N-mineralization rate. N immobilization and subsequent N release along with decreased use of available soil N due to S. kurilensis removal may have ensured greater N availability in the SR stand.  相似文献   

2.
The survivorship of a monocarpic bamboo grass,Sasa kurilensis, during the early regeneration process was documented by a 10 year observation of the seedling population after mass flowering in the Hakkoda Mountains, northern Japan. Three phases were recognized: the establishment, density-stable and thinning phases. The mortality of the densely germinated seedlings (932.9m−2 in aBetula ermanii forest and 1222.3 m−2 in aSasa grassland) was high, up to 0.5 year−1, in the establishment phase (0–1 year after germination) and low in the density-stable phase (1–3 years after germination). After reaching full density state, the seedling population showed a nearly constant mortality of 0.18 year−1 due to self-thinning (the thinning phase). The high C/F ratio presumably caused suppressed seedlings to die. Recovery of theS. kurilensis population was estimated to requireca 20 years in the study plots, judging from the height growth and the decrease in culm density of the seedling population. The illuminance on the ground was higher in the flowered population than in the unflowered one for 5 years after mass death. The duration of high ground illuminance is an important factor affecting the dynamics of forests withSasa undergrowth, because tree seedlings need to establish under high ground illuminance for the successful regeneration of the forests.  相似文献   

3.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

4.
The nut productivity, density of fallen nuts, seedling appearance and seedling survival of a Japanese beech (Fagus crenata Blume) were investigated at three localities, Mt Gozaisho, Mt Hodaka and Mt Bandai, Japan, from 1976 to 1992. Two patterns of cycles, a short cycle and a long one, were confirmed in the beech nut productivity. Synchronization in the long cycle was recognized both on Mt Hodaka and Mt Bandai. On Mt Gozaisho, the beech nut productivity was quite low, and the seedlings disappeared within 1 year. The phenomenon on Mt Gozaisho seemed to be caused by the low matter production mainly due to erosion and poor soils. A large number of seedlings appeared in the next spring of heavy mast years on Mt Hodaka and Mt Bandai. The large beech nut productivity contributed to the large seedling supply, and this enhanced the survival probability of beech seedlings. This demonstrates the possibility that beech seedlings survived longer even under dense dwarf bamboos, particularly if the seedling supply was large.  相似文献   

5.
We have investigated the factors influencing the distribution of co-occurring two dwarf bamboo species, Sasa kurilensis (Ruprecht) Makino et Shibata and S. senanensis (Franchet et Savatier) Rehder, within a conifer-broadleaved mixed stand managed with selection cutting in northern Japan. We first sought the possible determinant factors (physical environment and overstory conditions based on 30 years tree census data) deciding the dominant species in the plots (168 3.14m2 area). We then examined the effects of these factors on the culm density and height of the dominant species. Linear discriminant analysis indicated that physical environmental conditions are important in determining the distribution; S. kurilensis tended to dominate plots with steep slope, convex shape and deep snow in early spring. Multiple regression analyses showed that culm density and height decreased significantly on steep slopes for both species. Also, the sum of the basal area (BA) of surrounding conifers (7.5 m radius around the plot), as well as the change in BA over the previous 30 years, had a negative influence on the culm height of both species. A reduction in overstory trees, caused by natural or artificial canopy disturbances, would increase the dwarf bamboo biomass. The effects of physical environment and overstory conditions, working through the dominance of the two dwarf bamboo species, should be taken into account in understanding the dynamics of natural forests in this region.  相似文献   

6.
Ten polymorphic microsatellite markers were isolated from the dwarf bamboo species Sasa cernua and Sasa kurilensis. The applicability of these markers was confirmed by genotyping of open‐pollinated seeds and leaf samples from natural populations. Genotypes of seeds from each culm shared at least one allele from the maternal parent without contradiction. All 10 loci were polymorphic in S. cernua with 2–15 alleles (average HE = 0.532). Eight loci were polymorphic in S. kurilensis with 2–10 alleles (average HE = 0.532). These markers will be useful in detailing the extent of clonal and sexual reproduction in these species.  相似文献   

7.
Regeneration dynamics of beech forests in Japan   总被引:4,自引:0,他引:4  
  相似文献   

8.
Although a recent study has suggested that the minimum temperature from late April to mid-May in the year preceding flowering causes mast seeding in Fagus crenata, no direct evidence is available to support this finding. The aim of the present investigation was, therefore, to test – in a field experiment – whether the minimum temperature determines mast seeding in F. crenata. We examined the effect of nighttime temperatures on flower-bud initiation in F. crenata by enclosing fruit-bearing branches in heated bags at night, thereby maintaining average nighttime temperatures of approximately 2°C above the ambient temperatures. Heating was applied at night from 21 April to 20 May, 21 May to 19 June, and 21 April to 19 June in 2001. Female inflorescence initiation was inhibited by the nocturnal heating in the period 21 April to 20 May and 21 May to 19 June. However, nocturnal heating from 21 April to 20 May was the more important based on the odds ratio of the former being much lower than that of the latter in a logistic regression model. Male inflorescence initiation was also inhibited by nocturnal heating from 21 April to 20 May. We therefore conclude that flower-bud initiation in F. crenata was controlled by nighttime temperatures between 21 April and 20 May.  相似文献   

9.
C-glycosyl flavones, kurilensin A (1) and B (2), together with two known compounds, tricin-4'-O-beta-d-glucopyranoside (3) and tricin-5-O-beta-d-glucopyranoside (4), were isolated from hot-water extracts of the leaves of Sasa kurilensis. The structure of the compounds was determined by spectroscopic analyses including 1D, 2D NMR and MS. The absolute configuration of sugar moieties in 1 and 2 was determined by chiral HPLC analyses of the benzoyl derivatives of acid hydrolysis. Compounds 1 and 2 exhibited higher radical scavenging activity than ascorbic acid in the 1,1-diphenyl-2-pycrylhydrazyl (DPPH) assay system.  相似文献   

10.
11.
We have investigated cpDNA haplotype distribution in 24 populations of Fagus crenata in the southwest of Kanto District, Japan, and clarified the extent of intermixing of haplotypes in the contact zone by additional fine-scale analysis of two areas. Two cpDNA haplotypes belonging to different lineages were detected, and their distribution had geographical structure. Intermixed populations with the two haplotypes were limited to a narrow area. The geographical boundary between the haplotypes extended from Hakone to the west of the Kanto Mountains through the northern foot of Mt Fuji. No relationship was observed between the boundary location and the current topography of the southwest of Kanto District.  相似文献   

12.

Background and Aims

Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure.

Methods

The response of Siebold''s beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data.

Key Results

The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold''s beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity.

Conclusions

Ozone-induced stomatal closure in Siebold''s beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.  相似文献   

13.
Gap characteristics and gap regeneration were studied in several climaxFagus crenata forests in Japan. 278 gaps were observed. Gaps covered 12% of the total land area of 20.05 ha. Gap density was 13.9 gaps per ha and, mean gap size was 92.0 m2. Smaller gaps were much more frequent than larger ones. Gaps larger than 400 m2 were rare. Most gaps were created by the death of single trees. Canopy trees died more often standing or with broken trunks than by uprooting, although uprooted trees were relatively abundant in the site with poor soil drainage and in the site on upper slope. Differences of gap regeneration behaviour were recognized among tree species.F. crenata regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Most species other thanF. crenata andMagnolia obovata could not regenerate in their own gaps. More successful regeneration ofF. crenata may occur in gaps smaller than 200 m2, althought it regenerated in a wide range of gap size. However, increased relative density ofF. crenata in the canopy layer seems to prevent its successful regeneration. Gap regeneration of other species did not clearly depend on a species-specific gap size.  相似文献   

14.
Morphometric characters on 118 herbarium specimens ofLomelosia crenata subsp.crenata (regarded as including subsp.pseudisetensis) were statistically evaluated to detect discontinuities in the variation pattern. Three morphotypes were detected: specimens with short stems and long calyx bristles, specimens with short stems and short bristles, and specimens with long stems and short bristles. The first morphotypic group is separated from the others, which are partly overlapping. These groups broadly correspond toL. crenata subsp.crenata, toScabiosa crenata var.glabriuscula, and toL. crenata subsp.pseudisetensis, respectively.  相似文献   

15.
Shimano  Koji  Masuzawa  Tadashi 《Plant Ecology》1998,134(2):235-241
The escape of beech seeds from seed predators and winter desiccation due to snow accumulation was studied by comparing two sites in Japan: one site that experiences much snow and another site that experiences less snow cover. At the site with greater snow cover, about 70% of the beech seeds escaped seed predation by rodents during winter and about 70% of surviving seeds germinated successfully in spring. At the site with less snow cover, however, all of the beech seeds were eaten by rodents, and all seeds that were protected from feeding were killed by winter desiccation. We confirmed that snow prevents beech seeds from predation by rodents because it conceals their sight and scent. These effects are one of the main reasons why beeches in snowy areas regenerate constantly and those in less snowy areas do not.  相似文献   

16.
T. Awano  K. Takabe  M. Fujita 《Protoplasma》1998,202(3-4):213-222
Summary An antiserum against glucuronoxylans (GXs) has been raised from a mouse. The dot-blot immunoassay and competitive inhibition test indicated that the antibodies could bind specifically to GXs. Therefore, the antiserum was used for immunogold labelling to investigate the localization of GXs in Japanese beech. Labelling of GXs was seen only in the secondary walls of xylem cells, but not in the primary walls or the middle lamella. GXs were evenly distributed in the secondary walls except for the outer part of the outer secondary-wall layer in which they were less abundant. The labelling density in each secondary-wall layer (S1, S2, and S3) increased during cell wall formation. This result strongly suggests that the deposition of GXs occurs in a penetrative way.  相似文献   

17.
The floristic composition, structure and dynamics of three primaryFagus japonica stands were investigated in the Chichibu Mountains.F. japonica was dominant [RD(%): 64.9–87.0] and showed a slightly inverse J-shaped DBH class distribution in the quadrats [No. of canopy stems (H>20m): 87–138/ha]. The stems ofF. japonica for each size were distributed in the form of colonies, being scattered almost uniformly, and arranged in positive association with each other. Detailed examination of the bases of the stem groups forming colonies revealed that most of them originated from the bases of dead mother stems and that they were from common stools [No. of large stems (H>10 m) per stool: 6–11]. Among six major canopy gaps observed, only one included stems sprouting from the outer part ofF. japonica stools, while all the others were occupied by individuals of species other thanF. japonica. After tree-fall, several undercanopyF. japonica stems remained. Thus canopy gaps in these forest stands recovered through the sprouting of remainingF. japonica stools or by new sprouting ofF. japonica individuals adjacent to the gaps. However, it was considered difficult to fill canopy gaps only with sprouts when the distance between the center of a gap and that of a stool surpasses the crown vector. Such places that are not fully occupied by sprouts will be filled by individuals of other canopy and/or under-canopy species.  相似文献   

18.
To examine the colonization of living leaves from buds and twigs by phyllosphere fungi of Japanese beech, the mycobiota were investigated on buds and twigs and on leaves covered with well-ventilated bags before budbreak. Ten phyllosphere fungi were isolated from rolled-up leaves within buds, bud scales, and twigs. However, frequencies of phyllosphere fungi on expanded leaves were reduced markedly when the buds were covered with well-ventilated bags before budbreak compared to the leaves that were not covered. This observation suggests that invasion of the fungi to the leaves from buds and twigs may be possible but is not the main route. Horizontal transmission may be common in endophytes and epiphytes of beech leaves. Phyllosphere mycobiota were then compared between sun and shade leaves. Of 13 species recorded as phyllosphere fungi, the frequencies of 2 species were lower and those of 3 species were higher in sun leaves than in shade leaves. Frequencies of the other 8 phyllosphere species were not different between sun and shade leaves. This result indicates that the colonization of leaves by some phyllosphere fungi was affected by the microenvironmental conditions on leaf surfaces.  相似文献   

19.
T. Ohkubo 《Plant Ecology》1992,101(1):65-80
Structure and spatial distribution of stools and root-collar sprouts of Japanese beech (Fagus japonica) were studied to clarify the regeneration processes of the stool and the population, and the ecological importance of this stool formation in five quadrats of the natural forests with different forest floor vegetation on the Pacific side of Japan. F. japonica dominates in the canopy of each quadrat. Most of sprouts formed a circle around the root-collar and lowest parts of the parent stems of the stool with the youngest sprouts at the periphery. The regeneration by seedlings was slight especially on the forest floor vegetation of the dwarf bamboo Sasa. The variety of size structure of stems and the existence of dead traces and/or dead center in each stool, the apparent difference in stool size, and the aggregations of stools in the forests suggest that stool expansion and long persistence of the stool at a given location may contribute to compensate for the scarcity of regeneration by seedlings inhibited by dwarf bamboo, and by the other shrubs and herbs.  相似文献   

20.
The influence of climate on the radial growth of Fagus sylvatica was investigated using 15 chronologies developed from mature stands of the French Permanent Plot Network (RENECOFOR) growing under different climatic and soil conditions. The relationships between climate and ring widths were analyzed using extreme growth years, simple correlations and response functions analysis. Monthly climatic regressors were derived by a physiological water balance model that used daily climatic data and stand parameters to estimate soil water deficits. The three most frequent negative pointer years (1959, 1989, 1976) result from a particularly intense and durable drought, whereas positive years (1977, 1958) coincide with wet conditions. The total ring chronology variance attributable to climate averages 34.1% (15.8% –57%). Current early-summer soil water deficit enters in 10 models and the deficit in June explains alone a large part of the radial growth variability (mean value: 26.6%). Temperature or soil water deficit for the other months and weather conditions during the previous season were of little consistency across stands. The response pattern of earlywood is very similar and the percentage of variance explained is higher (16.2% –57.8%). Latewood widths present a different response pattern. High minimum temperature in August and/or September often favour wide latewood widths and monthly water deficits play a secondary role. The percentage of variance explained ranges from 8.8% to 67.4%. Soil water capacity strongly modulates ring characteristics and climate-growth relationships. Mean sensitivity, expressed population signal, signal-to-noise ratio and the strength of growth-climate correlations increase with decreasing soil water capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号