首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful automatic self-pollination in flowering plants isdependent on the correct development of reproductive organs.In the stamen, the appropriate growth of the filament, whichlargely depends on the mechanical properties of the cell wall,is required to position the anther correctly close to the stigmaat the pollination stage. Xyloglucan endotransglucosylase/hydrolases(XTHs) are a family of enzymes that mediate the constructionand restructuring of xyloglucan cross-links, thereby controllingthe extensibility or mechanical properties of the cell wallin a wide variety of plant tissues. Our reverse genetic analysishas revealed that a loss-of-function mutation of an ArabidopsisXTH family gene, AtXTH28, led to a decrease in capability forself-pollination, probably due to inhibition of stamen filamentgrowth. Our results also suggest that the role of AtXTH28 inthe development of the stamen is not functionally redundantwith its closest paralog, AtXTH27. Thus, our finding indicatesthat AtXTH28 is specifically involved in the growth of stamenfilaments, and is required for successful automatic self-pollinationin certain flowers in Arabidopsis thaliana.  相似文献   

2.
3.
Selaginella tamariscina, one of the most primitive vascularplants, can remain alive in a desiccated state and resurrectwhen water becomes available. To evaluate the nature of desiccationtolerance in this plant, we compared the composition of solublesugars and saturation ratios of phospholipids (PLs) betweenhydrated and desiccated tissues of S. tamariscina using gaschromatography. In this study, differences in gene expressionand ABA contents were also analyzed during dehydration. Theresults revealed that trehalose (at >130 mg g–1 DW)was the major soluble sugar, and low saturated fatty acid contentin PLs (0.31) was maintained in both hydrated and desiccatedtissues. In addition, the ABA content of S. tamariscina increased3-fold, and genes involved in ABA signaling and cellular protectionwere up-regulated while photosystem-related genes were down-regulatedduring dehydration. The biochemical and molecular findings suggestthat both constitutive and inducible protective molecules contributeto desiccation tolerance of S. tamariscina.  相似文献   

4.
The retromer complex is responsible for retrograde transport,which is coordinated with anterograde transport in the secretorypathway including vacuolar protein sorting. Yeast VPS35 is acomponent of the retromer complex that is essential for recognitionof specific cargo molecules. The physiological function of VPS35has not been determined in vacuolar protein sorting in higherorganisms. Arabidopsis thaliana has three VPS35 homologs designatedVPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1,vps35b-1, vps35b-2 and vps35c-1) and then generated four doublemutants and one triple mutant. vps35a-1 vps35c-1 exhibited nounusual phenotypes. On the other hand, vps35b-1 vps35c-1 andthe triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severephenotypes: dwarfism, early leaf senescence and fragmentationof protein storage vacuoles (PSVs). In addition, these mutantsmis-sorted storage proteins by secreting them out of the cellsand accumulated a higher level of vacuolar sorting receptor(VSR) than the wild type. VPS35 was localized in pre-vacuolarcompartments (PVCs), some of which contained VSR. VPS35 wasimmunoprecipitated with VPS29/MAG1, another component of theretromer complex. Our findings suggest that VPS35, mainly VPS35b,is involved in sorting proteins to PSVs in seeds, possibly byrecycling VSR from PVCs to the Golgi complex, and is also involvedin plant growth and senescence in vegetative organs.  相似文献   

5.
Recent molecular analyses in several plant species revealedthat TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologsare involved in regulating the flowering time and/or maintainingthe inflorescence meristem. In apple (Malusxdomestica Borkh.),four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb,were found and mapped by a similar position on putatively homoeologouslinkage groups. Apple TFL1/CEN-like genes functioned equivalentlyto TFL1 when expressed constitutively in transgenic Arabidopsisplants, suggesting that they have a potential to complementthe TFL1 function. Because MdTFL1 and MdTFL1a were expressedin the vegetative tissues in both the adult and juvenile phases,they could function redundantly as a flowering repressor anda regulator of vegetative meristem identity. On the other hand,MdCENa was mainly expressed in fruit receptacles, cultured tissuesand roots, suggesting that it is involved in the developmentof proliferating tissues but not in the control of the transitionfrom the juvenile to the adult phase. In contrast, MdCENb wassilenced in most organs probably due to gene duplication bythe polyploid origin of apple. The expression patterns of MdTFL1and MdCENa in apple were also supported by the heterologousexpression of β-glucuronidase fused with their promoterregions in transgenic Arabidopsis. Our results suggest thatfunctional divergence of the roles in the regulation of vegetativemeristem identity may have occurred among four TFL1/CEN-likegenes during evolution in apple.  相似文献   

6.
7.
By means of functional screening using the cadmium (Cd)-sensitiveycf1 yeast mutant, we have isolated a novel cDNA clone, DcCDT1,from Digitaria ciliaris growing in a former mining area in northernJapan, and have shown that it confers Cd tolerance to the yeastcells, which accumulated almost 2-fold lower Cd levels thancontrol cells. The 521 bp DcCDT1 cDNA contains an open readingframe of 168 bp and encodes a deduced peptide, DcCDT1, thatis 55 amino acid residues in length, of which 15 (27.3%) arecysteine residues. Five DcCDT1 homologs (here termed OsCDT1–OsCDT5)have been identified in rice, and all of them were up-regulatedto varying degrees in the above-ground tissues by CdCl2 treatment.Localization of green fluorescent protein fusions suggests thatDcCDT1 and OsCDT1 are targeted to both cytoplasmic membranesand cell walls of plant cells. Transgenic Arabidopsis thalianaplants overexpressing DcCDT1 or OsCDT1 displayed a Cd-tolerantphenotype and, consistent with our yeast data, accumulated loweramounts of Cd when grown on CdCl2. Collectively, our data suggestthat DcCDT1 and OsCDT1 function to prevent entry of Cd intoyeast and plant cells and thereby enhance their Cd tolerance.  相似文献   

8.
9.
10.
11.
Some plant species show constant rates of respiration and photosynthesismeasured at their respective growth temperatures (temperaturehomeostasis), whereas others do not. However, it is unclearwhat species show such temperature homeostasis and what factorsaffect the temperature homeostasis. To analyze the inherentability of plants to acclimate respiration and photosynthesisto different growth temperatures, we examined 11 herbace-ouscrops with different cold tolerance. Leaf respiration (Rarea)and photosynthetic rate (Parea) under high light at 360 µll–1 CO2 concentrations were measured in plants grown at15 and 30°C. Cold-tolerant species showed a greater extentof temperature homeostasis of both Rarea and Parea than cold-sensitivespecies. The underlying mechanisms which caused differencesin the extent of temperature homeostasis were examined. Theextent of temperature homeostasis of Parea was not determinedby differences in leaf mass and nitrogen content per leaf area,but by differences in photosynthetic nitrogen use efficiency(PNUE). Moreover, differences in PNUE were due to differencesin the maximum catalytic rate of Rubisco, Rubisco contents andamounts of nitrogen invested in Rubisco. These findings indicatedthat the temperature homeostasis of photosynthesis was regulatedby various parameters. On the other hand, the extent of temperaturehomeostasis of Rarea was unrelated to the maximum activity ofthe respiratory enzyme (NAD-malic enzyme). The Rarea/Parea ratiowas maintained irrespective of the growth temperatures in allthe species, suggesting that the extent of temperature homeostasisof Rarea interacted with the photosynthetic rate and/or thehomeostasis of photosynthesis.  相似文献   

12.
13.
Pollen represents an important nitrogen sink in flowers to ensurepollen viability. Since pollen cells are symplasmically isolatedduring maturation and germination, membrane transporters arerequired for nitrogen import across the pollen plasma membrane.This study describes the characterization of the ammonium transporterAtAMT1;4, a so far uncharacterized member of the ArabidopsisAMT1 family, which is suggested to be involved in transportingammonium into pollen. The AtAMT1;4 gene encodes a functionalammonium transporter when heterologously expressed in yeastor when overexpressed in Arabidopsis roots. Concentration-dependentanalysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformedplants allowed characterization of AtAMT1;4 as a high-affinitytransporter with a Km of 17 µM. RNA and protein gel blotanalysis showed expression of AtAMT1;4 in flowers, and promoter–genefusions to the green fluorescent protein (GFP) further definedits exclusive expression in pollen grains and pollen tubes.The AtAMT1;4 protein appeared to be localized to the plasmamembrane as indicated by protein gel blot analysis of plasmamembrane-enriched membrane fractions and by visualization ofGFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes.However, no phenotype related to pollen function could be observedin a transposon-tagged line, in which AtAMT1;4 expression isdisrupted. These results suggest that AtAMT1;4 mediates ammoniumuptake across the plasma membrane of pollen to contribute tonitrogen nutrition of pollen via ammonium uptake or retrieval.  相似文献   

14.
15.
Microdomains in the plasma membrane (PM) have been proposedto be involved in many important cellular events in plant cells.To understand the role of PM microdomains in plant cold acclimation,we isolated the microdomains as detergent-resistant plasma membranefractions (DRMs) from Arabidopsis seedlings and compared lipidand protein compositions before and after cold acclimation.The DRM was enriched in sterols and glucocerebrosides, and theproportion of free sterols in the DRM increased after cold acclimation.The protein-to-lipid ratio in the DRM was greater than thatin the total PM fraction. The protein amount recovered in DRMsdecreased gradually during cold acclimation. Cold acclimationfurther resulted in quantitative changes in DRM protein profiles.Subsequent mass spectrometry and Western blot analyses revealedthat P-type H+-ATPases, aquaporins and endocytosis-related proteinsincreased and, conversely, tubulins, actins and V-type H+-ATPasesubunits decreased in DRMs during cold acclimation. Functionalcategorization of cold-responsive proteins in DRMs suggeststhat plant PM microdomains function as platforms of membranetransport, membrane trafficking and cytoskeleton interaction.These comprehensive changes in microdomains may be associatedwith cold acclimation of Arabidopsis.  相似文献   

16.
The genetic basis of vascular differentiation and function isrelatively poorly understood, partly due to the difficulty ofscreening for mutants defective in internal vascular tissues.Here we present an approach based on a predicted increase invascular-related gene expression in response to an auxin transportinhibitor-induced vascular overgrowth. We used microarray analysesto identify 336 genes that were up-regulated 2-fold in shoottissues of Arabidopsis thaliana showing vascular overgrowth.Promoter–marker gene fusions revealed that 38 out of 40genes with 4-fold up-regulation in vascular overgrowth tissueshad vascular-related expression in transgenic Arabidopsis plants.Obtained expression patterns included cambial tissues and differentiatingxylem, phloem and fibers. A total of 15 genes were found tohave vascular-specific expression patterns in the leaves and/orinflorescence stems. This study provides empirical evidenceof the efficiency of the approach and describes for the firsttime the in situ expression patterns of the majority of theassessed genes.  相似文献   

17.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

18.
The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar   总被引:2,自引:0,他引:2  
Genes in the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1)family have been shown to be important in the control of theswitch between vegetative and reproductive growth in severalplant species. We isolated nine members of the FT/TFL1 familyfrom Lombardy poplar (Populus nigra var. italica Koehne). Sequenceanalysis of the members of the FT/TFL1 family revealed considerablehomology within their coding regions both among family membersand to the members of the same family in Arabidopsis, tomatoand grapevine. Moreover, members of this family in all fourspecies examined display a common exon–intron organization.Phylogenetic analysis revealed that the genes fall into fourdifferent clades: two into the TFL1 clade; five into the FTclade; and one each into the MOTHER OF FT AND TFL1 and BROTHEROF FT AND TFL1 clades. One gene in the TFL1 clade, PnTFL1, isexpressed in vegetative meristems, and transgenic Arabidopsisthat ectopically expressed PnTFL1 had a late-flowering phenotype.The expression patterns of two genes in the FT clade, PnFT1and PnFT2, suggested a role for them in the promotion of flowering,and transgenic Arabidopsis that ectopically expressed eitherPnFT1 or PnFT2 had an early-flowering phenotype.  相似文献   

19.
Identification of maize silicon influx transporters   总被引:1,自引:1,他引:0  
Maize (Zea mays L.) shows a high accumulation of silicon (Si),but transporters involved in the uptake and distribution havenot been identified. In the present study, we isolated two genes(ZmLsi1 and ZmLsi6), which are homologous to rice influx Sitransporter OsLsi1. Heterologous expression in Xenopus laevisoocytes showed that both ZmLsi1 and ZmLsi6 are permeable tosilicic acid. ZmLsi1 was mainly expressed in the roots. By contrast,ZmLsi6 was expressed more in the leaf sheaths and blades. Differentfrom OsLsi1, the expression level of both ZmLsi1 and ZmLsi6was unaffected by Si supply. Immunostaining showed that ZmLsi1was localized on the plasma membrane of the distal side of rootepidermal and hypodermal cells in the seminal and crown roots,and also in cortex cells in lateral roots. In the shoots, ZmLsi6was found in the xylem parenchyma cells that are adjacent tothe vessels in both leaf sheaths and leaf blades. ZmLsi6 inthe leaf sheaths and blades also exhibited polar localizationon the side facing towards the vessel. Taken together, it canbe concluded that ZmLsi1 is an influx transporter of Si, whichis responsible for the transport of Si from the external solutionto the root cells and that ZmLsi6 mainly functions as a Si transporterfor xylem unloading.  相似文献   

20.
Host legumes control root nodule numbers by sensing externaland internal cues. A major external cue is soil nitrate, whereasa feedback regulatory system in which earlier formed nodulessuppress further nodulation through shoot–root communicationis an important internal cue. The latter is known as autoregulationof nodulation (AUT), and is believed to consist of two long-distancesignals: a root-derived signal that is generated in infectedroots and transmitted to the shoot; and a shoot-derived signalthat systemically inhibits nodulation. In Lotus japonicus, theleucine-rich repeat receptor-like kinase, HYPERNODULATION ABERRANTROOT FORMATION 1 (HAR1), mediates AUT and nitrate inhibitionof nodulation, and is hypothesized to recognize the root-derivedsignal. Here we identify L. japonicus CLE-Root Signal 1 (LjCLE-RS1)and LjCLE-RS2 as strong candidates for the root-derived signal.A hairy root transformation study shows that overexpressingLjCLE-RS1 and -RS2 inhibits nodulation systemically and, furthermore,that the systemic suppression depends on HAR1. Moreover, LjCLE-RS2expression is strongly up-regulated in roots by nitrate addition.Based on these findings, we propose a simple model for AUT andnitrate inhibition of nodulation mediated by LjCLE-RS1, -RS2peptides and the HAR1 receptor-like kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号