首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Eason PD  Imperiali B 《Biochemistry》1999,38(17):5430-5437
Recent work has resulted in the development of potent inhibitors of oligosaccharyl transferase (OT), the enzyme that catalyzes the cotranslational glycosylation of asparagine [Hendrickson, T. L., Spencer, J. R., Kato, M., and Imperiali, B. (1996) J. Am. Chem. Soc. 118, 7636-7637; Kellenberger, C., Hendrickson, T. L., and Imperiali, B. (1997) Biochemistry 36, 12554-12559]. However, no specific OT inhibitors that function in the cellular environment have yet been reported. The peptide cyclo(hex-Amb-Cys)-Thr-Val-Thr-Nph-NH2 was previously shown to exhibit nanomolar inhibition (Ki = 37 nM) through slow tight binding kinetics [Hendrickson, T. L., Spencer, J. R., Kato, M., and Imperiali, B. (1996) J. Am. Chem. Soc. 118, 7636-7637]. Included herein is the redesign of this prototype inhibitor for achieving both passive and active translocation into model membrane systems representing the endoplasmic reticulum (ER). The strategy for passive transport involved the incorporation of a membrane permeable import function previously shown to carry various peptides across the outer as well as the interior cellular membranes [Rojas, M., Donahue, J. P., Tan, Z., and Lin, Y.-Z. (1998) Nat. Biotechnol. 16, 370-375]. Assessment of function in intact ER membranes revealed that the inhibitor targeted toward passive diffusion demonstrated concentration-dependent inhibition of two different glycosylation substrates. Thus, this modified inhibitor achieved potent inhibition of glycosylation after being successfully transported through the ER membrane. In the active translocation approach, the lead OT inhibitor and a corresponding substrate were redesigned to include features recognized by the transporter associated with antigen processing (TAP). This protein translocates peptides into the lumen of the ER [Heemels, M.-T., Schumacher, T. N. M., Wonigeit, K., and Ploegh, H. L. (1993) Science 262, 2059-2063]. However, although acceptance of the cyclized substrate by the TAP receptor was demonstrated via efficient transport and glycosylation, the modified inhibitor was not translocated by TAP machinery, and therefore, active translocation was achieved for the modified substrate only. Both of these ER transport methods afforded redesigned OT inhibitors that retained their inhibitor properties in vitro, regardless of the extensions to the carboxy-terminus of the root inhibitor. The above family of redesigned inhibitors provides a template for generating a transcellular pathway and represents the first step toward OT inhibition in intact cells.  相似文献   

2.
The role of ATP-dependent calcium uptake into intracellular storage compartments is an essential feature of hormonally induced calcium signaling. Thapsigargin, a non-phorboid tumor promoter, increasingly is being used to manipulate calcium stores because it induces a hormone-like elevation of cytosolic calcium. It has been suggested that thapsigargin acts through inhibition of the endoplasmic reticulum calcium pump. We have directly tested the specificity of thapsigargin on all of the known intracellular-type calcium pumps (referred to as the sarcoplasmic or endoplasmic reticulum Ca-ATPase family (SERCA]. Full-length cDNA clones encoding SERCA1, SERCA2a, SERCA2b, and SERCA3 enzymes were expressed in COS cells, and both calcium uptake and calcium-dependent ATPase activity were assayed in microsomes isolated from them. Thapsigargin inhibited all of the SERCA isozymes with equal potency. Furthermore, similar doses of thapsigargin abolished the calcium uptake and ATPase activity of sarcoplasmic reticulum isolated from fast twitch and cardiac muscle but had no influence on either the plasma membrane Ca-ATPase or Na,K-ATPase. The interaction of thapsigargin with the SERCA isoforms is rapid, stoichiometric, and essentially irreversible. These properties demonstrate that thapsigargin interacts with a recognition site found in, and only in, all members of the endoplasmic and sarcoplasmic reticulum calcium pump family.  相似文献   

3.
Quality control in the endoplasmic reticulum must discriminate nascent proteins in their folding process from terminally unfolded molecules, selectively degrading the latter. Unassembled Ig-mu and J chains, two glycoproteins with five N-linked glycans and one N-linked glycan, respectively, are degraded by cytosolic proteasomes after a lag from synthesis, during which glycan trimming occurs. Inhibitors of mannosidase I (kifunensine), but not of mannosidase II (swainsonine), prevent the degradation of mu chains. Kifunensine also inhibits J chain dislocation and degradation, without inhibiting secretion of IgM polymers. In contrast, glucosidase inhibitors do not significantly affect the kinetics of mu and J degradation. These results suggest that removal of the terminal mannose from the central branch acts as a timer in dictating the degradation of transport-incompetent, glycosylated Ig subunits in a calnexin-independent way. Kifunensine does not inhibit the degradation of an unglycosylated substrate (lambda Ig light chains) or of chimeric mu chains extended with the transmembrane region of the alpha T cell receptor chain, implying the existence of additional pathways for extracting proteins from the endoplasmic reticulum lumen for proteasomal degradation.  相似文献   

4.
The soluble alpha-mannosidase of rat liver, originally described as a cytoplasmic alpha-mannosidase, has been purified to homogeneity by conventional techniques. The purified enzyme has an apparent molecular weight of 350,000 and is composed of 107-kDa subunits. The soluble alpha-mannosidase has the same enzymatic properties as the endoplasmic reticulum (ER) membrane alpha-mannosidase of rat liver (Bischoff, J., and Kornfeld, R. (1983) J. Biol. Chem. 258, 7909-7910) which is believed to play a role in oligosaccharide processing in the rough ER. Like the membrane-bound ER alpha-mannosidase, the soluble alpha-mannosidase can hydrolyze alpha-linked mannose from both p-nitrophenyl alpha-mannoside (Km = 0.14 mM) and high mannose oligosaccharides, is not inhibited by the mannose analogues swainsonine and 1-deoxymannojirimycin, is stabilized by MnCl2 or CoCl2, and does not bind to concanavalin A-Sepharose. A goat polyclonal antibody raised against the purified soluble alpha-mannosidase specifically recognizes the rat liver membrane-bound ER alpha-mannosidase, leading us to propose that they are two forms of the same enzyme and that the soluble form is derived from the ER membrane alpha-mannosidase by proteolysis. The antibody also cross-reacts with both the soluble and membrane-bound forms of ER alpha-mannosidase activity in cultured Chinese hamster ovary cells and rat H35 hepatoma cells. Since the ER alpha-mannosidase is presumed to be involved in the early steps of oligosaccharide processing, the action of the purified soluble form of the enzyme on high mannose oligosaccharides was examined. Surprisingly, the enzyme released free mannose from oligosaccharides ranging in size from Glc1Man9GlcNAc to Man5GlcNAc with almost equal efficiency. However, a long term incubation of the enzyme with Man9GlcNAc led to the accumulation of Man7GlcNAc and produced only small amounts of Man6GlcNAc and Man5GlcNAc. Structural analysis of these reaction products indicated that the purified soluble form of ER alpha-mannosidase shows little specificity for which mannose residues it removes from Man9GlcNAc. In contrast, as shown in the accompanying paper, the intracellular action of ER alpha-mannosidase on glycoprotein-bound Man9GlcNAc2 is highly specific.  相似文献   

5.
We have previously described a hybrid protein, GHHA, that contains a fragment of the influenza hemagglutinin joined to the C terminus of a nearly complete rat growth hormone (Rizzolo, L.J., Finidori, J., Gonzalez, A., Arpin, M., Ivanov, I.E., Adesnik, M., and Sabatini, D.D. (1985) J. Cell Biol. 101, 1351-1362). GHHA was transported from the rough endoplasmic reticulum (ER) to a smooth cisterna, continuous with the rough ER, but proximal to the Golgi apparatus. We have now labeled GHHA with [3H]palmitate, demonstrating that fatty acylation can occur in the ER. As expected for a thioester linkage, the label was released from GHHA by hydroxylamine and identified as palmitic acid by thin-layer chromatography. In a second study, we analyzed the structure of the N-linked carbohydrate chain of GHHA. The N-linked oligosaccharides, all high-mannose type, were released by endoglycosidase H and size-fractionated by high pressure liquid chromatography. The predominant structures were Glc1Man8GlcNAc and Man8GlcNAc, indicating that only 2 or 3 glucose and 1 mannose residues were removed from the original Glc3Man9GlcNAc2. Determination of the structure by acetolysis fragmentation indicated that a single Man8GlcNAc isomer was formed by a deoxymannojirimycin-sensitive alpha-mannosidase. This contrasts with a previously characterized ER alpha-mannosidase (Bischoff, J., Liscum, L., and Kornfeld, R. (1986) J. Biol. Chem. 261, 4766-4774) that generates the same isomer, but is deoxymannojirimycin-resistant. These data suggest the possibility that different enzymes are partitioned within the ER.  相似文献   

6.
Saccharomyces cerevisiae Man9-alpha-mannosidase, responsible for trimming Man9GlcNAc2 in the endoplasmic reticulum to Man8GlcNAc2, the substrate for oligosaccharide elongation, has been purified to homogeneity from stabilized microsomal membranes without employing autolytic digestion. The activity was solubilized by the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethyl ammonio]-1-propanesulphonate (CHAPS), whose presence was necessary for maximal activity. Purification included Q-Sepharose ion-exchange chromatography, preparative isoelectric focusing and HPLC gel filtration on TSK 3000 matrix. Overall purification from post-nuclear supernatants was estimated to be 110,000-fold with a 50% recovery of activity. The purified enzyme hydrolysed Man9GlcNAc1,2 from thyroglobulin or oligosaccharide-lipid, but not invertase Man9GlcNAc, Man1 alpha 2Man1 alpha OCH3 or p-nitrophenyl-alpha-D-mannopyranoside. Conversion of thyroglobulin Man9GlcNAc to Man8GlcNAc was linear with time and enzyme concentration, with an apparent Km of 0.2 mM and a specific activity of 220 IU/mg. Glc3Man9GlcNAc2 from oligosaccharide-lipid was as good a substrate as Man9GlcNAc, but the lipid-linked Man7GlcNAc2 isomer was hydrolysed at only 10% of this rate. Hydrolysis of defined isomers of IgM and bovine thyroglobulin Man6,7,8GlcNAc indicated that, for maximal alpha 1,2-mannosidase activity, only the alpha 1,2-linked terminal mannoses on the alpha 3 branch of the Man9GlcNAc precursor were dispensable. Isomers lacking the terminal alpha 1,2-linked mannose on the alpha 6 branch were hydrolysed at only approximately 10% of the maximal rate. The enzyme exhibited a pI of 5.3 and a pH optimum at 6.5. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the absence of reducing agents gave a single sharp band at 66 kDa, while in the presence of beta-mercaptoethanol equimolar amounts of two peptides, one of 44 kDa and one of 23 kDa, were obtained. Sizing on Sephacryl SF300, Superose 12 and TSK 3000 provided a holoenzyme mol. wt of 60-68 kDa, indicating that the isolated active form of the Man9-alpha-mannosidase was composed of one each of the sulphydryl-bonded dissimilar peptides. The enzyme bound to concanavalin A (ConA)-Sepharose and was eluted with alpha-methylmannoside, indicating the presence of high-mannose oligosaccharides. The Man9-alpha-mannosidase required low levels of Ca2+, which could be removed by EGTA. Activity was restored by Ca2+ or Zn2+, but not by Mg2+ or Mn2+.  相似文献   

7.
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.  相似文献   

8.
As resolved by electrophoresis in non-reducing SDS gels, transferrin newly made in Hep G2 cells migrates as a very diffuse set of species. During a subsequent 1-h chase all transferrin polypeptides are converted to a single, rapidly migrating species. These changes in gel mobility are due to alterations in the pattern of disulfide bonding, are not caused by carbohydrate processing, and occur while the protein is in the rough endoplasmic reticulum. Cyclosporin A causes an approximately 10-min lag in transferrin folding, after which folding resumes at the normal rate. Cyclosporin A also retards transferrin maturation from the endoplasmic reticulum and its secretion, at concentrations that do not affect secretion of other hepatoma proteins. Neither FK506 nor rapamycin affect transferrin folding. We conclude that an initial stage in transferrin folding is accelerated by an endoplasmic reticulum peptidyl-proline isomerase that is inhibited by cyclosporin A.  相似文献   

9.
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.  相似文献   

10.
Previous studies have reported that calreticulin (CRT), a calcium-binding and chaperoning protein, is expressed only in the endoplasmatic reticulum, nucleus and at the cell surface. In this study we clearly show that odontoblasts and predentin matrix contain CRT. To our knowledge, this is the first time CRT has been described in the extracellular matrix. The expression of CRT was studied by immunohistochemistry, ultrastructural immunocytochemistry and in situ hybridization in developing rat teeth. CRT was detected as a 59-kDa protein in rat pulp cell culture medium and dentin extracellular matrix extract by Western blotting. The presence of the protein was shown in rat odontoblasts and predentin with immunohistochemistry. At the ultrastructural level, the labeling was distributed in the rat odontoblasts, ameloblasts and predentin. Northern blotting showed the presence of CRT mRNA in rat molars, which was confirmed by in situ hybridization in odontoblasts and ameloblasts. We now present the first convincing evidence that CRT is found in extracellular matrix where it may play an important role in mineralization.  相似文献   

11.
Protein sorting to plant vacuoles is known to be dependent on a considerable variety of protein motifs recognized by a family of sorting receptors. This can involve either traffic from the endoplasmic reticulum (ER) through the Golgi apparatus or direct ER-to-vacuole transport. Barley aspartic protease (Phytepsin) was shown previously to reach the vacuole via trafficking through the Golgi apparatus. Here we show that Phytepsin normally exits the ER in a COPII-mediated manner, because the Phytepsin precursor accumulates in the ER upon specific inhibition of the formation of COPII vesicles in vivo. Phytepsin differs from its yeast and mammalian counterparts by the presence of a saposin-like plant-specific insert (PSI). Deletion of this domain comprising 104 amino acids causes efficient secretion of the truncated molecule (Phytepsin Delta PSI) without affecting the enzymatic activity of the enzyme. Interestingly, deletion of the PSI also changes the way in which Phytepsin exits the ER. Inhibition of COPII vesicle formation causes accumulation of the Phytepsin precursor in the ER but has no effect on the secretion of Phytepsin Delta PSI. This suggests either that vacuolar sorting commences at the ER export step and involves recruitment into COPII vesicles or that the PSI domain carries two signals, one for COPII-dependent export from the ER and one for vacuolar delivery from the Golgi. The relevance of these observations with respect to the bulk flow model of secretory protein synthesis is discussed.  相似文献   

12.
We have purified a glycosylated, membrane-spanning protein of relative molecular mass approximately 34,000 (Mr approximately 34 K) from canine microsomes that appears to be essential for protein translocation across the endoplasmic reticulum (ER) as shown by the inhibitory action of antibodies directed against it and of monovalent Fab-fragments produced from them. The ER membrane contains at least as many molecules of the 34 K membrane protein as bound ribosomes. The protein can be detected immunologically in tissues of various organisms, indicating an universal function.  相似文献   

13.
We describe a procedure for disassembling rat liver rough microsomes, which allows the purification of the rough endoplasmic reticulum (ER) membrane. Membrane-bound ribosomes and adsorbed proteins are first detached by washing rough microsomes with 5 mM Na-pyrophosphate. In a second step, the vesicle membrane is opened by digitonin, with concomitant release of the luminal content. The purification is monitored at each step by electron microscopy, and by assaying chemical constituents (protein, phospholipid, RNA) and marker enzymes for the main subcellular organelles. The final membrane preparation is representative of the ER, since it contains 24.1% of the liver glucose 6-phosphatase with a relative specific activity of 14.2. Contaminants represent less than 5% of its protein content. SDS-polyacrylamide gel electrophoresis, followed by immunoblot analysis, reveals that the ribophorins I and II, two established markers of the rough (d) domain are still present in the final membrane preparation. It also contains the docking protein (or signal recognition particle receptor) and protein disulfide isomerase, and has conserved the functional capacity to remove co- and post-translationally the signal peptide of pre-secretory proteins. The membrane preparation is suitable for studies on the polypeptide composition of the d domain.  相似文献   

14.
Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.  相似文献   

15.
16.
The mammalian endoplasmic reticulum (ER) is an organelle that maintains a complex, compartmentalized organization of interconnected cisternae and tubules while supporting a continuous flow of newly synthesized proteins and lipids to the Golgi apparatus. Using a phenotypic screen, we identify a small molecule, dispergo, that induces reversible loss of the ER cisternae and extensive ER tubulation, including formation of ER patches comprising densely packed tubules. Dispergo also prevents export from the ER to the Golgi apparatus, and this traffic block results in breakdown of the Golgi apparatus, primarily due to maintenance of the constitutive retrograde transport of its components to the ER. The effects of dispergo are reversible, since its removal allows recovery of the ER cisternae at the expense of the densely packed tubular ER patches. This recovery occurs together with reactivation of ER-to-Golgi traffic and regeneration of a functional Golgi with correct morphology. Because dispergo is the first small molecule that reversibly tubulates the ER and inhibits its export function, it will be useful in studying these complex processes.  相似文献   

17.
The mutant strain of Dictyostelium discoideum, HMW-437, contains a mutation in the structural gene coding for the lysosomal enzyme alpha-mannosidase. Unlike the wild type strain, Ax3, this strain fails to proteolytically process or secrete the 140,000-dalton alpha-mannosidase precursor. The level of sulfate incorporation into the mutant precursor was significantly lower when compared to the wild type precursor. In addition, the mutant precursor was entirely sensitive to endoglycosidase H. Subcellular fractionation of HMW-437 membranes indicated that the majority of the alpha-mannosidase precursor sedimented in a region of the gradient corresponding to the rough endoplasmic reticulum. This accumulation within the rough endoplasmic reticulum did not appear to result from gross conformational changes which lead to aggregation. Trypsin digestion of radioactively labeled Ax3 and HMW-437 precursors demonstrated that there were differences in susceptibility to protease cleavage between the wild type and mutant alpha-mannosidase precursor molecules, suggesting that a minor conformational change could contribute to the accumulation of the mutant precursor inside the endoplasmic reticulum.  相似文献   

18.
We have studied the post-translational processing and the biosynthetic sorting of three protein components of murine endoplasmic reticulum (ER), ERp60, ERp72, and ERp99. In pulse-labeled MOPC-315 (where MOPC-315 represents mineral oil-induced plasmacytoma cells) plasmacytoma cells, no precursor forms of these proteins were detected and only ERp99 was sensitive to endoglycosidase H. The ERp99 oligosaccharide remained endoglycosidase H sensitive during a 3-h chase, and analysis by high performance liquid chromatography showed the predominant structure to be Man8GlcNAc2. We have used a sucrose gradient analysis of pulse-labeled MOPC-315 plasmacytoma cells in order to directly study the biosynthetic sorting of both glycosylated and nonglycosylated ERps and have found no strong evidence to suggest these proteins ever leave the endoplasmic reticulum. In spite of their common sorting pathway, these proteins differ in their membrane orientation. Both ERp60 and ERp72 are entirely protected by the endoplasmic reticulum membrane while ERp99 appears to have a large domain exposed on the cytoplasmic face of the endoplasmic reticulum.  相似文献   

19.
20.
A robust mathematical model developed from single cell calcium (Ca(2+)) dynamics has enabled us to predict the consequences of over-expression of endoplasmic reticulum-located chaperones. Model predictions concluded that calreticulin interacts with the lumenal domain of the sarcoplasmic and endoplasmic reticulum Ca(2+)-activated ATPase (SERCA) pump, altering pump affinity for Ca(2+) (K(1/2) switches from 247 to 431 nM) and hence generating Ca(2+) oscillations. Expression of calreticulin in the ER generated an average of six transient-decline oscillations during the Ca(2+) recovery phase, upon exposure to maximal levels of the agonist ATP. In contrast, normal cells produced a single Ca(2+) transient with few or no oscillations. By conditioning the model to experimental data, parameters for generation and decay of IP(3) and SERCA pump kinetics were determined. To elucidate the possible source of the oscillatory behavior three possible oscillators, 1) IP(3), 2) IP(3)R, and 3) SERCA pump, were investigated and parameters constrained by experimental data to produce the best candidate. Each of the three oscillators generated very good fits with experimental data. However, converting a normal exponential recovery to a transient-decline oscillator predicted that the SERCA pump is the most likely candidate for calreticulin-mediated Ca(2+) release, highlighting the role of this chaperone as a signal protein within the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号