首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang SL  Wallar BJ  Lipscomb JD  Mayo KH 《Biochemistry》2001,40(32):9539-9551
Methane monooxygenase (MMO) is a non-heme-iron-containing enzyme which consists of 3 protein components: a hydroxylase (MMOH), an NAD(P)H-linked reductase (MMOR), and a 138-residue regulatory protein, component B (MMOB). Here, NMR spectroscopy has been used to derive interactions between MMOB and reduced and oxidized states of MMOH (245 kDa). Differential broadening of MMOB resonances in 1H-15N HSQC spectra acquired at different molar ratios of MMOH indicates interaction of both proteins, with MMOB binding more tightly to oxidized MMOH as observed previously. The most broadened backbone NH resonances suggest which residues in MMOB are part of the MMOH-binding interface, particularly when those residues are spatially close or clustered in the structure of MMOB. Although a number of different residues in MMOB appear to be involved in interacting with oxidized- and reduced-MMOH, some are identical. The two most common segments, proximal in the structure of MMOB, are beta-strand 1 with turn 1 (residues 36-46) and alpha-helix 3 going into loop 2 (residues 101-112). In addition, the N-terminus of MMOB is observed to be involved in binding to MMOH in either redox state. This is most strongly evidenced by use of a synthetic N-terminal peptide from MMOB (residues 1-29) in differential broadening 1H TOCSY studies with MMOH. Binding specificity is demonstrated by displacement of the peptide from MMOH by parent MMOB, indicating that the peptide binds in or near the normal site of N-terminal binding. The N-terminus is also observed to be functionally important. Steady-state kinetic studies show that neither a delta2-29 MMOB deletion mutant (which in fact does bind to MMOH), the N-terminal peptide, nor a combination of the two elicit the effector functions of MMOB. Furthermore, transient kinetic studies indicate that none of the intermediates of the MMOH catalytic cycle are observed if either the delta2-29 MMOB mutant or the N-terminal peptide is used in place of MMOB, suggesting that deletion of the N-terminus prevents reaction of reduced MMOH with O2 that initiates catalysis.  相似文献   

2.
We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine beta-lactoglobulin (variant A) at pH 2. 6, where the protein is a monomer. The structure of this low-pH form of beta-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6-160, is approximately 1.3 A. Differences arise from the orientation, with respect to the calyx, of the A-B and C-D loops, and of the flanking three-turn alpha-helix. The hydrophobic cavity within the calyx is retained at low pH. The E-F loop (residues 85-90), which moves to occlude the opening of the cavity over the pH range 7.2-6.2, is in the "closed" position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of (15)N T(1)s and T(2)s and (1)H-(15)N heteronuclear NOEs at pH 2.6 and 37 degrees C. Although the residues of the E-F loop (residues 86-89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T(1) to T(2), consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of beta-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.  相似文献   

3.
Long-[Arg(3)]insulin-like growth factor-I (IGF-I) is a potent analog of insulin-like growth factor-I that has been modified by a Glu(3) --> Arg mutation and a 13-amino acid extension appended to the N terminus. We have determined the solution structure of (15)N-labeled Long-[Arg(3)]-IGF-I using high resolution NMR and restrained molecular dynamics techniques to a precision of 0.82 +/- 0.28 A root mean square deviation for the backbone heavy atoms in the three alpha-helices and 3.5 +/- 0.9 A root mean square deviation for all backbone heavy atoms excluding the 8 N-terminal residues and the 8 C-terminal eight residues. Overall, the structure of the IGF-I domain is consistent with earlier studies of IGF-I with some minor changes remote from the N terminus. The major variations in the structure, compared with IGF-I, occur at the N terminus with a substantial reorientation of the N-terminal three residues of the IGF-I domain. These results are interpreted in terms of the lower binding affinity for insulin-like growth factor-binding proteins. The backbone dynamics of Long-[Arg(3)]IGF-I were investigated using (15)N nuclear spin relaxation and the heteronuclear nuclear Overhauser enhancement (NOE). There is a considerable degree of flexibility in Long-[Arg(3)]IGF-I, even in the alpha-helices, as indicated by an average ((1)H)(15)N NOE of 0.55 for the regions. The largest heteronuclear NOEs are observed in the helical regions, lower heteronuclear NOEs are observed in the C-domain loop separating helix 1 from helix 2, and negative heteronuclear NOEs are observed in the N-terminal extension and at the C terminus. Despite these data indicating conformational flexibility for the N-terminal extension, slow amide proton exchange was observed for some residues in this region, suggesting some transitory structure does exist, possibly a molten helix. A certain degree of flexibility may be necessary in all insulin-like growth factors to enable association with various receptors and binding proteins.  相似文献   

4.
Cytochrome b5 in solution has two isomers (A and B) differing by a 180 degrees rotation of the protoporphyrin IX plane around the axis defined by the alpha and gamma meso protons. Homonuclear and heteronuclear NMR spectroscopy has been employed in order to solve the solution structure of the minor (B) form of the oxidized state of the protein and to probe its backbone dynamics in the microsecond--ms timescale in both oxidation states. A family of 40 conformers has been obtained using 1302 meaningful NOEs and 220 pseudocontact shifts and is characterized by high quality and good resolution (rmsd to the mean structure of 0.055 +/- 0.009 nm and 0.103 +/- 0.011 nm for backbone and heavy atoms, respectively). Extensive comparisons of the structural and dynamics changes associated with the A-to-B form interconversion for both oxidation states were subsequently performed. Propionate 6 experiences a redox-state-dependent reorientation as does propionate 7 in the A form. Significant insights are obtained into the role of the protein frame for efficient biological function and backbone mobility is proposed to be one of the factors that could control the reduction potential of the heme.  相似文献   

5.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

6.
Although imidazole ligand binding to cytochrome c is not directly related to its physiological function, it has the potential to provide valuable information on the molecular and electronic structure of the protein. The solution structure of the imidazole adduct of oxidized horse heart cytochrome c (Im-cyt c) has been determined through 2D NMR spectroscopy. The Im-cyt c, 8 mM in 1.2 M imidazole solution at pH 5.7 and 313 K, provided altogether 2,542 NOEs (1,901 meaningful NOEs) and 194 pseudocontact shifts. The 35 conformers of the family show the RMSD values to the average structure of 0.063+/-0.007 nm for the backbone and 0.107+/-0.007 nm for all heavy atoms, respectively. The characterization of Im-cyt c is discussed in detail both in terms of structure and electronic properties. The replacement of the axial ligand Met80 with the exogenous imidazole ligand induces significant conformation changes in both backbone and side chains of the residues located in the distal axial ligand regions. The imidazole ligand binds essentially parallel to the imidazole of the proximal histidine, the two planes forming an angle of 8+/-7 degrees. The electron delocalization on the heme moiety and the magnetic susceptibility tensor are consistent with these structural features.  相似文献   

7.
The (1)H NMR solution structure of the Cu(I)-bound form of Atx1, a 73-amino acid metallochaperone protein from the yeast Saccharomyces cerevisiae, has been determined. Ninety percent of the (1)H and 95% of the (15)N resonances were assigned, and 1184 meaningful NOEs and 42 (3)J(HNH)(alpha) and 60 (1)J(HN) residual dipolar couplings provided a family of structures with rmsd values to the mean structure of 0.37 +/- 0.07 A for the backbone and 0.83 +/- 0.08 A for all heavy atoms. The structure is constituted by four antiparallel beta strands and two alpha helices in a betaalphabetabetaalphabeta fold. Following EXAFS data [Pufahl, R., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., Cizewski Culotta, V., Penner-Hahn, J. E., and O'Halloran, T. V. (1997) Science 278, 853-856], a copper ion can be placed between two sulfur atoms of Cys15 and Cys18. The structure of the reduced apo form has also been determined with similar resolution using 1252 meaningful NOEs (rmsd values for the family to the mean structure are 0.67 +/- 0.12 A for the backbone and 1.00 +/- 0.12 A for all heavy atoms). Comparison of the Cu(I) and apo conformations of the protein reveals that the Cu(I) binding cysteines move from a buried site in the bound metal form to a solvent-exposed conformation on the surface of the protein after copper release. Furthermore, copper release leads to a less helical character in the metal binding site. Comparison with the Hg(II)-Atx1 solid-state structure [Rosenzweig, A. C., Huffman, D. L., Hou, M. Y., Wernimont, A. K., Pufahl, R. A., and O'Halloran, T. V. (1999) Structure 7, 605-617] provides insights into the copper transfer mechanism, and a pivotal role for Lys65 in the metal capture and release process is proposed.  相似文献   

8.
To learn the structural basis for the unusually tight binding of 8-oxo-nucleotides to the MutT pyrophosphohydrolase of Escherichia coli (129 residues), the solution structure of the MutT-Mg(2+)-8-oxo-dGMP product complex (K(D) = 52 nM) was determined by standard 3-D heteronuclear NMR methods. Using 1746 NOEs (13.5 NOEs/residue) and 186 phi and psi values derived from backbone (15)N, Calpha, Halpha, and Cbeta chemical shifts, 20 converged structures were computed with NOE violations 相似文献   

9.
Calsensin is an EF-hand calcium-binding protein expressed by a subset of peripheral sensory neurons that fasciculate into a single tract in the leech central nervous system. Calsensin is a 9-kD protein with two EF-hand calcium-binding motifs. Using multidimensional NMR spectroscopy we have determined the solution structure and backbone dynamics of calcium-bound Calsensin. Calsensin consists of four helices forming a unicornate-type four-helix bundle. The residues in the third helix undergo slow conformational exchange indicating that the motion of this helix is associated with calciumbinding. The backbone dynamics of the protein as measured by (15)N relaxation rates and heteronuclear NOEs correlate well with the three-dimensional structure. Furthermore, comparison of the structure of Calsensin with other members of the EF-hand calcium-binding protein family provides insight into plausible mechanisms of calcium and target protein binding.  相似文献   

10.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

11.
A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 820-830, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

12.
At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy, is highly cooperative. A concomitant increase in the intensity of both sequential and long-range nuclear Overhauser effects (NOEs) between backbone amide protons in successive acquisitions of 1H-15N HSQC-NOESY-HSQC spectra provides the first direct observation of the development of structure-specific NOEs as a protein folds. Our results show that the local and long-range interactions in the native apoplastocyanin are formed simultaneously, consistent with highly cooperative formation of the native structure.  相似文献   

13.
On the basis of sequence-specific resonance assignments for the complete polypeptide backbone and most of the amino acid side chains by heteronuclear nuclear magnetic resonance (NMR) spectroscopy, the urea-unfolded form of the outer membrane protein X (OmpX) from Escherichia coli has been structurally characterized. (1)H-(1)H nuclear Overhauser effects (NOEs), dispersion of the chemical shifts, amide proton chemical shift temperature coefficients, amide proton exchange rates, and (15)N[(1)H]-NOEs show that OmpX in 8 M urea at pH 6.5 is globally unfolded, but adopts local nonrandom conformations in the polypeptide segments of residues 73-82 and 137-145. For these two regions, numerous medium-range and longer-range NOEs were observed, which were used as the input for structure calculations of these polypeptide segments with the program DYANA. The segment 73-82 forms a quite regular helical structure, with only loosely constrained amino acid side chains. In the segment 137-145, the tryptophan residue 140 forms the core of a small hydrophobic cluster. Both nonrandom structures are present with an abundance of about 25% of the protein molecules. The sequence-specific NMR assignment and the physicochemical characterization of urea-denatured OmpX presented in this paper are currently used as a platform for investigations of the folding mechanism of this integral membrane protein.  相似文献   

14.
A study of the regular secondary structure elements of recombinant human interleukin-1 beta has been carried out using NMR spectroscopy. Using a randomly 15N labeled sample, a number of heteronuclear three- and two-dimensional NMR experiments have been performed, which have enabled a complete analysis of short-, medium-, and long-range NOEs between protons of the polypeptide backbone, based on the sequence-specific resonance assignments that have been reported previously [Driscoll, P. C., Clore, G. M., Marion, D., Wingfield, P. T., & Gronenborn, A. M. (1990) Biochemistry 29, 3542-3556]. In addition, accurate measurements of a large number of 3JHN alpha coupling constants have been carried out by two-dimensional heteronuclear multiple-quantum-coherence-J spectroscopy. Amide NH solvent exchange rates have been measured by following the time dependence of the 15N-1H correlation spectrum of interleukin-1 beta on dissolving the protein in D2O solution. Analysis of these data indicate that the structure of interleukin-1 beta consists of 12 extended beta-strands aligned in a single extended network of antiparallel beta-sheet structure that in part folds into a skewed six-stranded beta-barrel. In the overall structure the beta-strands are connected by tight turns, short loops, and long loops in a manner that displays approximate pseudo-three-fold symmetry. The secondary structure analysis is discussed in the light of the unrefined X-ray structure of interleukin-1 beta at 3-A resolution [Priestle, J. P., Sch?r, H.-P., & Grütter, M. G. (1988) EMBO J. 7, 339-343], as well as biological activity data. Discernible differences between the two studies are highlighted. Finally, we have discovered conformational heterogeneity in the structure of interleukin-1 beta, which is characterized by an exchange rate that is slow on the NMR chemical shift time scale.  相似文献   

15.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

16.
The solution structure of recombinant wild-type hirudin and of the putative active site mutant Lys-47----Glu has been investigated by nuclear magnetic resonance (NMR) spectroscopy at 600 MHz. The 1H NMR spectra of the two hirudin variants are assigned in a sequential manner with a combination of two-dimensional NMR techniques. Some assignments made in our previous paper [Sukumaran, D. K., Clore, G. M., Preuss, A., Zarbock, J., & Gronenborn, A. M. (1987) Biochemistry 26, 333-338] were found to be incorrect and are now corrected. Analysis of the NOE data indicates that hirudin consists of an N-terminal compact domain (residues 1-49) held together by three disulfide linkages and a disordered C-terminal tail (residues 50-65) which does not fold back on the rest of the protein. This last observation corrects conclusions drawn by us previously on hirudin extracted from its natural source, the leech Hirudo medicinalis. The improved sensitivity of the 600-MHz spectrometer relative to that of our old 500-MHz spectrometer, the availability of two variants with slightly different chemical shifts, and the additional information arising from stereospecific assignments of methylene beta-protons and methyl protons of valine have permitted the determination of the solution structure of hirudin with much greater precision than before. Structure calculations on the N-terminal domain using the hybrid distance geometry-dynamical simulated annealing method were based on 685 and 661 approximate interproton distance restraints derived from nuclear Overhauser enhancement (NOE) data for the wild-type and mutant hirudin, respectively, together with 16 distance restraints for 8 backbone hydrogen bonds identified on the basis of NOE and amide NH exchange data and 26 phi backbone and 18 chi 1 side-chain torsion angle restraints derived from NOE and three-bond coupling constant data. A total of 32 structures were computed for both the wild-type and mutant hirudin. The structure of residues 2-30 and 37-48 which form the core of the N-terminal domain is well determined in both cases with an average atomic rms difference between the individual structures and the respective mean structures of approximately 0.7 A for the backbone atoms and approximately 1 A for all atoms. As found previously, the orientation of the exposed finger of antiparallel beta-sheet (residues 31-36) with respect to the core could not be determined on the basis of the present data due to the absence of any long-range NOEs between the exposed finger and the core.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The three-dimensional solution structure of the protein part of Cu7 metallothionein (Cu7MT) of Saccharomyces cerevisiae has been attempted by 1H two-dimensional NMR spectroscopy at 800 MHz. The protein part constitutes 53 amino acids. A total of 1192 NOEs, of which 1048 are meaningful, were used to determine the solution structure of the first 40 residues, the last 13 residues being disordered. A family of 30 structures was generated. Root-mean-square deviation (rmsd) values from the average structure of 0.32 +/- 0.13 A and 0.61 +/- 0.15 A for backbone and all heavy atoms, respectively, were obtained for the residues 2-40. The ten copper-coordinating cysteine sulfurs and the empty spaces around them are well defined. The structure of the protein part is similar but not identical to the available ones of the same holoprotein and of the Ag7 metallothionein, and is qualitatively superior. If the same metal-sulfur connectivities reported in the literature from 1H-109Ag heteronuclear multiple quantum coherence spectroscopy are assumed to hold for the present copper derivative, a peptide structure is obtained which is again similar, but still not identical, within indetermination, to that available. The structure of the copper polymetallic center may well be different from that proposed for the silver derivative, and indeed a number of different arrangements of the seven copper ions are consistent with the present highly refined structure of the protein part.  相似文献   

19.
Lee SY  Lee JH  Chang HJ  Cho JM  Jung JW  Lee W 《Biochemistry》1999,38(8):2340-2346
Single-chain monellin (SCM), which is an engineered 94-residue polypeptide, has proven to be as sweet as native two-chain monellin. SCM is more stable than the native monellin for both heat and acidic environments. Data from gel filtration HPLC and NMR indicate that the SCM exists as a monomer in aqueous solution. The solution structure of SCM has been determined by nuclear magnetic resonance (NMR) spectroscopy and dynamical simulated annealing calculations. A stable alpha-helix spanning residues Phe11-Ile26 and an antiparallel beta-sheet formed by residues 2-5, 36-38, 41-47, 54-64, 69-75, and 83-88 have been identified. The sheet was well defined by backbone-backbone NOEs, and the corresponding beta-strands were further confirmed by hydrogen bond networks based on amide hydrogen exchange data. Strands beta2 and beta3 are connected by a small bulge comprising residues Ile38-Cys41. A total of 993 distance and 56 dihedral angle restraints were used for simulated annealing calculations. The final simulated annealing structures (k) converged well with a root-mean-square deviation (rmsd) between backbone atoms of 0.49 A for secondary structural regions and 0.70 A for backbone atoms excluding two loop regions. The average restraint energy-minimized (REM) structure exhibited root-mean-square deviations of 1.19 A for backbone atoms and 0.85 A for backbone atoms excluding two loop regions with respect to 20 k structures. The solution structure of SCM revealed that the long alpha-helix was folded into the concave side of a six-stranded antiparallel beta-sheet. The side chains of Tyr63 and Asp66 which are common to all sweet peptides showed an opposite orientation relative to H1 helix, and they were all solvent-exposed. Residues at the proposed dimeric interface in the X-ray structure were observed to be mostly solvent-exposed and demonstrated high degrees of flexibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号