首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ginkgo biloba extract (EGb 761) exerts a neuroprotective effect against ischemic brain injury through an anti-apoptotic mechanism. Parvalbumin is a calcium buffering protein that plays an important role in modulating intracellular calcium concentration and regulating apoptotic cell death. The aim of this study was to investigate whether EGb 761 affects parvalbumin expression in cerebral ischemic injury. Adult male Sprague-Dawley rats were treated with vehicle or EGb 761 (100 mg/kg) prior to middle cerebral artery occlusion (MCAO) and cerebral cortex tissues were collected 24 h after MCAO. A proteomic approach revealed a reduction in parvalbumin expression in the vehicle-treated animals, whereas EGb 761 pretreatment attenuates the ischemic injury-induced decrease in parvalbumin expression. RT-PCR and Western blot analyses clearly confirmed the fact that EGb 761 prevents the injury-induced decrease in parvalbumin. Moreover, the results of immunohistochemical staining showed that the number of parvalbumin-positive cells was lower in vehicle-treated animals than in sham-operated animals, and EGb 761 averted this decrease. Thus, these results suggest that the maintenance of parvalbumin expression is associated with the neuroprotective function of EGb 761 against neuronal damage induced by ischemia.  相似文献   

2.
R. Kaschel 《Phytomedicine》2011,18(14):1202-1207

Introduction

Recent reviews showed that Ginkgo biloba extract EGb 7611 is effective to enhance performance in patients with cognitive impairment (e.g., dementia). The aim of this study was to investigate the effects of EGb 761 on memory and the specificity of such effects on distinct memory functions in middle-aged healthy volunteers.

Methods

A total of 188 healthy subjects aged 45-56 years were randomised to receive EGb 761 (240 mg once daily) or placebo for 6 weeks. Outcome measures were the change in memory performance in a demanding standardised free recall paradigm (list of appointments) and a less demanding standardised recognition test (driving-route). Based on previous findings we predicted superiority of EGb 761 in recall testing. Specificity in effects was assessed by separating immediate vs. delayed and quantitative vs. qualitative free recall measures.

Results

After 6 weeks, EGb 761-treated subjects improved significantly in quantity of recall, i.e., the number of correctly recalled appointments (drug-placebo differences: p = 0.038 for immediate and p = 0.008 for delayed recall). Effects on qualitative recall performance (ratio of false to correct items) were similar (drug-placebo differences: p = 0.092 for immediate and p = 0.010 for delayed recall). No superiority of Ginkgo was evident in another everyday memory test which asked for recognition of a driving route (drug-placebo differences: p > 0.10). The incidence of adverse events was low and not significantly different between treatment groups.

Discussion

EGb 761 (240 mg once daily) improves free recall of appointments in middle-aged healthy volunteers, which requires high demands on self-initiated retrieval of learned material. This function is known to be sensitive to normal aging, i.e., reduced in healthy middle-aged subjects. No effects are seen in a less demanding everyday memory task which does not tap this critical function. This ties in with previous studies which found specific patterns of benefit from EGb 761 in demanding cognitive tasks.  相似文献   

3.
The present study investigated the protective effects of Ginkgo biloba extract (EGb 761) on rat liver mitochondrial damage induced by in vitro anoxia/reoxygenation. Anoxia/reoxygenation was known to impair respiratory activities and mitochondrial oxidative phosphorylation efficiency. ADP/O (2.57 +/- 0.11) decreased after anoxia/reoxygenation (1.75 +/- 0.09, p < .01), as well as state 3 and uncoupled respiration (-20%, p < .01), but state 4 respiration increased (p < .01). EGb 761 (50-200 microg/ml) had no effect on mitochondrial functions before anoxia, but had a specific dose-dependent protective effect after anoxia/reoxygenation. When mitochondria were incubated with 200 microg/ml EGb 761, they showed an increase in ADP/O (2.09 +/- 0.14, p < .05) and a decrease in state 4 respiration (-22%) after anoxia/reoxygenation. In EPR spin-trapping measurement, EGb 761 decreased the EPR signal of superoxide anion produced during reoxygenation. In conclusion, EGb 761 specially protects mitochondrial ATP synthesis against anoxia/reoxygenation injury by scavenging the superoxide anion generated by mitochondria.  相似文献   

4.
According to the free radical theory of aging, oxygen-derived free radicals causes the age-associated impairment at the cellular and tissue levels. The mitochondrial theory of aging points to mitochondria, and specially mitochondrial DNA, as the major targets of free radical attack upon aging. Thus, oxidative damage to mtDNA accumulate with age in human and rodent tissues and also is inversely related to maximum life span of mammals. Mitochondrial deficits, such as a decrease in mitochondrial membrane potential, occur upon aging due to oxidative damage. The age-related mitochondrial oxidative stress may be prevented by late onset administration of certain antioxidants, such as Ginkgo biloba extract EGb 761. These antioxidants may also delay the physiological impairment associated with aging.  相似文献   

5.
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements, taken for its multivalent properties. In this study, dosage effects of EGb761 on hydrogen peroxide (H2O2)-induced apoptosis of human neuroblastoma SH-SY5Y cells were investigated. It was found that H2O2-induced apoptotic cell death in SH-SY5Y cells, which was revealed in DNA fragmentation, mitochondrial membrane potential depolarization, and activation of Akt, c-Jun N-terminal kinases (JNK) and caspase 3. Low doses of EGb761 (50–100 μg/ml) inhibited H2O2-induced cell apoptosis via inactivation of Akt, JNK and caspase 3 while high doses of EGb761 (250–500 μg/ml) enhanced H2O2 toxicities via inactivation of Akt and enhancement of activation of JNK and caspase 3. Additional experiments revealed that H2O2 decreased intracellular GSH content, which was also inhibited by low concentrations of EGb761 but enhanced after high concentrations of EGb761 treatment. This further suggests to us that dosage effects of EGb761 on apoptotic signaling proteins may be correlated with regulation of cell redox state. Therefore, treatment dosage may be one of the vital factors that determine the specific action of EGb761 on oxidative stress-induced cell apoptosis. To understand the mechanisms of dosage effects of EGb761 may have important clinical implications.  相似文献   

6.
The present study was conducted to evaluate the different effects of the constituents of EGb761 (Ginkgo biloba Extract) on apoptosis in cerebellar granule cells induced by hydroxyl radicals. The total flavonoid component of EGb761, two pure EGb761 components (rutin and quercetin), and a mixture of flavonoids and terpenes protected cerebellar granule cells from oxidative damage and apoptosis induced by hydroxyl radicals. ESR(electron spin resonance) results showed that the IC50 of the flavonoids for scavenging hydroxyl radicals was almost the same as that of EGb761, even though flavonoids make up only 24% of EGb761, implying that other constituents of EGb761 besides flavonoids can scavenge hydroxyl radicals. Total terpenes of EGb761 did not protect against apoptosis. Flavonoids and terpenes did not show a synergistic effect in this regard. Terpenes did not scavenge hydroxyl radicals directly, which might be related to their "cage-like" structures.  相似文献   

7.
Cytokines such as tumor necrosis factor alpha (TNF-α)-induced expression of matrix metalloproteinase (MMP) play a pivotal role in the destruction of articular cartilage in patients who are suffering from osteoarthritis (OA). Collagen type II, the basis for articular cartilage, can be degraded by MMP-1, MMP-3, and 13. EGb761, the standardized extract of Ginkgo biloba produced by Dr. Willar Schwabe Pharmaceuticals, has shown its anti-inflammatory capacity. This study aimed to determine a mechanism whereby EGb761 may inhibit cartilage degradation. Our results indicated that pretreatment with EGb761 abolishes MMP-1, MMP-3, and MMP-13 gene expression and protein expression induced by TNF-α in human chondrocyte monolayer. In addition, the reduction of the tissue inhibitor of metalloproteinase-1(TIMP-1) and metalloproteinase-2 gene expression induced by TNF-α was rescued by pretreatment with EGb761. Importantly, TNF-α-induced degradation of collagen type II was ameliorated by EGb761 in a dose-dependent manner. Mechanistically, our results indicated that EGb761 treatment attenuated TNF-α-induced NF-κB activation. These actions of EGb761 suggest a mechanism by which EGb761 may act to prevent cartilage breakdown in arthritis.  相似文献   

8.
目的:探讨EGb761对LPS诱导THP-1细胞释放HMGB1蛋白表达的调节,为EGb761的临床运用提供可行的依据。方法:LPS(1μg/m L)诱导不同时间后,western blotting检测THP-1细胞上清液中HMGB1蛋白含量变化及不同浓度EGb761对LPS诱导THP-1细胞释放HMGB1蛋白的表达和NF-κB的活性;酶联免疫吸附法(ELISA)检测细胞中IL-1β、IL-6、TNF-α的含量。共聚焦显微镜观察EGb761对LPS诱导THP-1细胞释放HMGB1蛋白核转位变化。结果:(1)LPS组IL-1β、IL-6、TNF-α的含量在刺激6-12 h后明显高于空白对照组,而EGb761+LPS组IL-1β、IL-6、TNF-α的含量均显著低于LPS组(P0.05)。(2)EGb761处理LPS诱导THP-1细胞6 h后细胞上清液NF-κB活性表达量较空白对照组低,随着处理时间延长至12 h,NF-κB的活性表达量呈明显下降趋势(P0.05)。(3)LPS诱导THP-1细胞18 h后,细胞上清液中HMGB1蛋白含量呈明显升高趋势(P0.05)。(4)不同浓度EGb761对LPS诱导THP-1细胞18 h后,HMGB1蛋白含量较空白对照组有下降趋势,HMGB1蛋白含量随着EGB761浓度增加至100μg/m L呈下降趋势并呈浓度依赖效应(P0.05)。(5)LPS诱导THP-1细胞后,在共聚焦显微镜下可见胞浆中大量HMGB1蛋白标记分布,而EGb761+LPS共同诱导THP-1细胞后胞浆中可见少量HMGB1蛋白分布。结论:LPS可诱导THP-1细胞IL-1β、IL-6、TNF-α表达增多及NF-κB活化,导致HMGB1蛋白表达增多及核转位,而EGB761能抑制THP-1细胞IL-1β、IL-6、TNF-α表达及NF-κB活化,调节HMGB1蛋白的表达及核转位。  相似文献   

9.
EGb761对血管性痴呆大鼠海马突触可塑性的影响   总被引:1,自引:0,他引:1  
目的:探讨银杏叶提取物(EGb761)对血管性痴呆(VD)模型大鼠海马突触可塑性的影响。方法:Morris水迷宫检测大鼠空间学习记忆能力;电生理学方法在体记录大鼠海马长时程增强。结果:各时间点模型组大鼠的逃逸潜伏期(EL)均较假手术组明显延长(P〈0.01),药物组各亚组大鼠的EL均显著短于模型组(P〈0.01),但仍长于假手术组(P〈0.01,P〈0.05)。模型组各亚组大鼠长时程增强(LTP)诱导率显著低于假手术组和药物组(P〈0.01)。模型组大鼠各时间点群发峰电位(PS)的相对幅值明显低于假手术组和药物组(P〈0.01,P〈0.05)。假手术组、模型组和药物组各时间点的PS潜伏期无显著差别。结论:VD模型大鼠长时间存在空间学习记忆障碍,EGb761能促进VD模型大鼠海马病理性突触可塑性的恢复,这可能是其促智作用的重要机制。  相似文献   

10.
EGb761 has been suggested to be an antioxidant and free radical scavenger. Excess generation of free radicals, leading to lipid peroxidation (LP), has been proposed to play a role in the damage to striatal neurons induced by 1-methyl-4-phenylpyridinium (MPP+). We investigated the effects of EGb761 pretreatment on MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 for 17 days at different doses (0.63, 1.25, 2.5, 5 or 10 mg/kg) followed by administration of MPP+, (0.18, 0.36 or 0.72 mg/kg). LP was analyzed in corpus striatum at 30 min, 1 h, 2 h and 24 h after MPP+ administration. Striatal dopamine content was analyzed by HPLC at the highest EGb761 dose at 2 h and 24 h after MPP+ administration. MPP+-induced LP was blocked (100%) by EGb761 (10 mg/kg). Pretreatment with EGb761 partially prevented (32%) the dopamine-depleting effect of MPP+ at 24 h. These results suggest that supplements of EGb761 may be effective at preventing MPP+-induced oxidative stress.  相似文献   

11.

Background

The aim of the studies was to examine the potential immunoregulatory activity of Ginkgo biloba extract (EGb 761) on cytokine production, one of the mechanisms of innate antiviral immunity, by human peripheral blood leukocytes (PBLs) ex vivo.

Methodology

PBLs isolated from healthy blood donors were treated with different, nontoxic concentrations of EGb 761. Levels of different cytokines (TNF-α, IFN-α, IFN-Γ, IL-10 and IL-12), important in innate immunity development, were determined by ELISA.

Results

EGb 761, apart from strengthening of antiviral response, showed a differential impact on cytokine production by human PBLs ex vivo. It decreased the level of TNF-α and IFN-α but strongly increased the level of IFN-γ in PBLs stimulated by vesicular stomatitis virus (VSV) and non-stimulated PBLs. The extract reduced the production of IL-10 and IL-12 by human PBLs. The results were discussed and compared with previously published findings on the activity of the synthetic drug donepezil.

Conclusions

According to the results from the present study and our previous investigations, we report immunoregulatory activity of EGb 761 on different cytokine production by human PBLs ex vivo, which indicates the possibility of using the drug for the treatment of many immune deficiencies or infectious diseases through strengthening of innate immunity reactions.  相似文献   

12.
Sphingolipids are essential structural components of cellular membranes, playing prominent roles in signal transduction that governs cell proliferation, differentiation and apoptosis. Ceramides, a family of distinct molecular species characterized by various acyl chains, are synthesized de novo at the cytosolic side of the endoplasmic reticulum serving as precursors for the biosynthesis of sphingolipids in the Golgi. Recently, mitochondria emerged as an important intracellular compartment of sphingolipid metabolism. Thus, several sphingolipid-metabolizing enzymes were found to be associated with mitochondria, including neutral ceramidase, novel neutral sphingomyelinase, and (dihydro) ceramide synthase, an important ceramide-generating enzyme in de novo ceramide synthesis and recycling pathway. Mitochondrial dysfunction appears to be essential in tissue damage after brain ischemia/reperfusion (IR). Mitochondria are known to be involved in both the necrosis and apoptosis detected in animal models of ischemic stroke, and treatments that ameliorate tissue infarction were associated with better recovery of mitochondrial function. Although mitochondrial injury in stroke has been extensively studied and key mitochondrial functions affected by IR are mainly characterized, the nature of the molecule that causes loss of mitochondrial integrity and function remains obscure. Emerging data indicate a deregulation of ceramide metabolism in mitochondria damaged by IR suggesting that ceramides could play critical roles in cerebral IR-induced mitochondrial damage. This review will examine the experimental evidence supporting the key role of ceramides in mitochondrial dysfunction in cerebral IR and highlight potential targets for development of novel therapeutic approaches for stroke treatment.  相似文献   

13.
Jian Cheng 《Steroids》2010,75(11):754-759
Biologic sex and sex steroids are important factors in clinical and experimental stroke. This review evaluates key evidence that biological sex strongly alters mechanisms and outcomes from cerebral ischemia. The role of androgens in male stroke is understudied and important to pursue given that male sex is a well known risk factor for human stroke. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. We review recent advances in our understanding of androgens in the context of ischemic cell death and neuroprotection. We also highlight some possible molecular mechanisms by which androgens impact ischemic outcomes.  相似文献   

14.
The objective of the present study was to characterize the action of Ginkgo biloba extract (EGb761) and its sub-fractions on glutathione homeostasis in a human keratinocyte cell culture model. Cells were incubated with EGb761, its purified flavonoid (quercetin, kaempferol, rutin) or terpenoids (gingkolides A, B, C, J, bilobalide) constituents or the vehicle for up to 72 hours. Incubation of keratinocytes with the purified flavonoids or terpenoids did not affect cellular GSH levels. However, EGb761 treatment (up to 200 microg/ml) resulted in a dose-dependent increase of cellular GSH. Western blot analysis of extracts from cells treated with EGb761 revealed increased levels of the catalytic subunit of gamma-glutamylcysteinyl synthetase (gamma-GCS), the rate-limiting enzyme in GSH synthesis. The abundance of mRNA for the catalytic subunit (assayed by RT-PCR) was also increased by the treatment with EGb761. Increased levels of cellular GSH by EGb761 were also observed in other cell lines including those from human bladder and liver as well as in murine macrophages indicating that the induction of gamma-GCS mRNA, protein and GSH may be an ubiquitous effect of EGb761 in mammalian cells.  相似文献   

15.
R. Hoerr   《Phytomedicine》2005,12(8):598-600
Based on simple comparisons of drug-placebo differences found in clinical trials, it has repeatedly been concluded that EGb 761 is less effective in the treatment of Alzheimer's disease than cholinesterase (ChE) inhibitors. However, the data of pivotal studies with both types of drugs show that drug-placebo differences in cognitive outcomes are more influenced by the degrees of deterioration of the placebo groups than by changes of the actively treated groups. Since the former are determined by characteristics of the patient samples and the therapeutic environment, but not by drug effects, it is concluded that direct comparisons of drug-placebo differences are inappropriate to assess the relative potencies of anti-dementia drugs. Comparisons have to take into account the different unspecific influences. The currently available data do not support the notion of superiority of ChE inhibitors over EGb 761.  相似文献   

16.
The duality of the inflammatory response to traumatic brain injury   总被引:19,自引:0,他引:19  
One and a half to two million people sustain a traumatic brain injury (TBI) in the US each year, of which approx 70,000–90,000 will suffer from long-term disability with dramatic impacts on their own and their families’ lives and enormous socio-economic costs. Brain damage following traumatic injury is a result of direct (immediate mechanical disruption of brain tissue, or primary injury) and indirect (secondary or delayed) mechanisms. These secondary mechanisms involve the initiation of an acute inflammatory response, including breakdown of the blood-brain barrier (BBB), edema formation and swelling, infiltration of peripheral blood cells and activation of resident immunocompetent cells, as well as the intrathecal release of numerous immune mediators such as interleukins and chemotactic factors. An overview over the inflammatory response to trauma as observed in clinical and in experimental TBI is presented in this review. The possibly harmful/beneficial sequelae of post-traumatic inflammation in the central nervous system (CNS) are discussed using three model mediators of inflammation in the brain, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β). While the former two may act as important mediators for the initiation and the support of post-traumatic inflammation, thus causing additional cell death and neurologic dysfunction, they may also pave the way for reparative processes. TGF-β, on the other hand, is a potent anti-inflammatory agent, which may also have some deleterious long-term effects in the injured brain. The implications of this duality of the post-traumatic inflammatory response for the treatment of brain-injured patients using anti-inflammatory strategies are discussed.  相似文献   

17.
Cardiovascular autonomic neuropathy causes abnormalities in the diabetic heart with various clinical sequelae, including exercise intolerance, arrhythmias and painless myocardial infarction. Little is known about (ultra)structural alterations of the myocardial nervous network. On the assumption that this diabetes-specific neuropathy develops due to permanently increased oxidative stress by liberation of oxygen-free radicals, adjuvant application of antioxidative therapeutics appears promising in preventing or delaying long-term diabetic complications. We have investigated the effects of Ginkgo biloba extract (EGb 761), a radical scavenger, against diabetes-induced myocardial nervous damage in spontaneously diabetic BioBreeding/Ottawa Karlsburg (BB/OK) rats. Morphological and morphometric parameters were evaluated by electron microscopy. We used immunohistochemistry to investigate protein expression of protein gene product 9.5, S100 protein, and thyroxin hydroxylase as a neuronal marker. Alterations of cardiac sympathetic activity were measured using the in vivo 123I-metaiodobenzyl-guanidine imaging, and the immunofluorescent labeling of beta1-adrenergic receptors and adenylate cyclase. Our results revealed that A) Diabetes results in slight to moderate ultrastructural alterations (hydrops, disintegration of substructure) of autonomic nerve fibers and related Schwann cells in untreated BB diabetic rats; B) Cardiac sympathetic integrity and activity is impaired due to alterations in the presynaptic nerve terminals and the postsynaptic ?1-AR-AC coupling system; C) Pre-treatment of diabetic myocardium with EGb results in an improvement of most of these parameters compared to unprotected myocardium. In conclusion, EGb may act as a potent therapeutic adjuvant in diabetics with respect to cardiovascular autonomic neuropathy, which may contribute to the prevention of late complications in diabetes.  相似文献   

18.
19.
Summary Tritiated thymidine autoradiography was used to measure cellular proliferation after ischemic injury in gerbil brain. Gerbils were subjected to bilateral occlusion of the common carotid arteries which resulted in areas of necrosis, or infarcts, in the posterior thalamus or midbrain. From 12 h to 10 days following the ischemia, gerbils were injected with 3H thymidine, sacrificed 4 h later, and the brains sectioned. In order to identify astrocytes and monocytes/macrophages, immunocytochemistry was performed prior to autoradiography, using antisera against glial fibrillary acidic protein and endothelial-monocyte reticuloendothelial antigen, respectively. Immunocytochemistry was also used to visualize microvessel laminin, myelin, and leakage of serum albumin. Lastly, a histochemical procedure for acid phosphatase activity was employed to verify cellular phagocytic activity in the wound. A reproducible sequence of reactions took place during the first 10 days after ischemia. Early changes included leakage of albumin and myelin breakdown, followed by arrival of monocytes at 2 days and their differentiation into macrophages by 5 days. These cells exhibited intense proliferation from 2 to 6 days post-ischemia. Microvessel endothelial cells were maximally labeled at 4 days post-ischemia. Hypertrophied astrocytes were apparent at 2 days and proliferated from 3 to 7 days post-ischemia, and by 10 days the wound was replaced by a glial scar.  相似文献   

20.
Previous studies have reported that T cell deficiency reduced infarct sizes after transient middle cerebral artery (MCA) suture occlusion in mice. However, how reperfusion and different models affect the detrimental effects of T cells have not been studied. We investigated the effects of T cell deficiency in nude rats using two stroke models and compared their infarct sizes with those in WT rats. In the distal MCA occlusion (MCAo) model, the distal MCA was permanently occluded and the bilateral common carotid arteries (CCAs) were transiently occluded for 60 min. In the suture MCAo model, the MCA was transiently occluded for 100 min by the insertion of a monofilament suture. Our results showed that T cell deficiency resulted in about a 50% reduction in infarct size in the suture MCAo model, whereas it had no effect in the distal MCAo model, suggesting the protective effects of T cell deficiency are dependent on the ischemic model used. We further found more total T cells, CD4 T cells and CD8 T cells in the ischemic brains of WT rats in the suture MCAo model than in the distal MCAo model. In addition, we detected more CD68-expressing macrophages in the ischemic brains of WT rats than in nude rats in the suture MCAo but not the distal MCAo model. Lymphocyte reconstitution in nude rats resulted in larger infarct sizes in the suture MCAo, but not in the distal MCAo stroke model. The results of regional CBF measurement indicated a total reperfusion in the MCAo model but only a partial reperfusion in the distal MCAo model. In conclusion, the protective effects of T cell deficiency on brain injury are dependent on the ischemic model used; likely associated with different degrees of reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号