首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K B Hall  L W McLaughlin 《Biochemistry》1991,30(44):10606-10613
Four pentamers with the general sequence 5'CU(T)GU(T)G/5'CACAG have been prepared by chemical synthesis in order to generate duplex structures with common sequences. The four duplexes studied include the DNA.DNA duplex (5'dCACAG/5'dCTGTG) and the RNA.RNA duplex (5'rCUGUG/5'rCACAG) as well as the two corresponding DNA.RNA heteroduplexes (5'rCUGUG/5'dCACAG and 5'CACAG/5'dCTGTG). The measured entropy, enthalpy, and free energy changes upon melting are reported for each pentamer and compared to the predicted values where possible. Results show that the two DNA.RNA heteroduplexes are destabilized (delta G degrees 25 = -4.2 +/- 0.4 kcal/mol) relative to either the DNA.DNA duplex (delta G degrees 25 = -4.8 +/- 0.5 kcal/mol) or the RNA.RNA duplex (delta G degrees 25 = -5.8 +/- 0.6 kcal/mol). Circular dichroism spectra indicate that the RNA and the two heteroduplexes adopt an A-form conformation, while the DNA conformation is B-form. Imino proton NMR spectra also show that the heteroduplex structures resemble the RNA.RNA duplex.  相似文献   

2.
We are interested in creating artificial gene repressors based on duplex DNA recognition by nucleic acids. Homopyrimidine RNA oligonucleotides bind to duplex DNA at homopurine/homopyrimidine sequences under slightly acidic conditions. Recognition is sequence-specific, involving rU.dA.dT and rC+.dG.dC base triplets. Affinities were determined for folded polymeric RNAs (ca. 100-200 nt) containing 0, 1 or 3 copies of a 21 nt RNA sequence that binds duplex DNA by triple helix formation. When this recognition sequence was inserted into the larger folded RNAs, micromolar concentrations of the resulting RNA ligands bound a duplex DNA target at pH 5. However, these binding affinities were at least 20-fold lower than the affinity of an RNA oligonucleotide containing only the recognition sequence. Enzymatic probing of folded RNAs suggests that reduced affinity arises from unfavorable electrostatic, structural and topological considerations. The affinity of a polymeric RNA with three copies of the recognition sequence was greater than that of a polymeric RNA with a single copy of the sequence. This affinity difference ranged from 2.6- to 13-fold, depending on pH. Binding of duplex DNA by polymeric RNA might be improved by optimizing the RNA structure to efficiently present the recognition sequence.  相似文献   

3.
4.
DNA and RNA undergo photodegradation in UVC (200-290 nm) due to direct absorption by the purine and pyrimidine bases. Limited effects are observed under UVB (290-320 nm) or UVA (320-400 nm). We have observed that an endogenous photosensitizer, riboflavin (RF), upon exposure to UVB or UVA can extensively damage the DNA and RNA bases. Guanine, uracil, thymine, adenine and cytosine were degraded by 100%, 82%, 60.4%, 46.3% and 10.3% under UVA (12 J) and by 100%, 54.1%, 38.9%, 42.2% and <1.0% under UVB (6 J), respectively. Guanosine and deoxyguanosine were degraded by 98 ± 1.0% and 80 ± 1.0% under UVA (4 J) and UVB (12 J), respectively. With an exception of GMP (53-82%), dGMP (51-88%) and to some extent TMP (3-4%) the remaining nucleosides and nucleotides were resistant to RF-induced photodecomposition. The photodegradation of G derivatives by RF was 2-fold higher than a well known photodynamic agent rose bengal. A comparison of the intensities of UVA and UVB sources used in this study with natural sunlight suggests that exposure with the latter along with an endogenous photosensitizer can have similar effects on DNA and RNA depending upon the duration of exposure.  相似文献   

5.
In a medium containing 10mM Tris, pH 8, 10 mM MG++, 50 mM K+ and 10 mM NH4, the binding of an E. coli RNA polymerase holoenzyme unwinds the DNA helix by about 240 degrees at 37 degrees C. In this medium the total unwinding of the DNA increases linearly with the molar ratio of polymerase to DNA. The number of binding sites at which unwinding can occur is very large. If the K+ concentration is increased at 200 mM, the enzyme binds to only a limited number of sites, and the bound and free enzyme molecules do not exchange at an appreciable rate. The unwinding angle of the DNA per bound enzyme in this high salt medium is measured to be 140 degrees at 37 degrees C. The total unwinding angle for a fixed number of bound polymerase molecules per DNA is strongly temperature dependent, and decreases with decreasing temperature.  相似文献   

6.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

7.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

8.
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.  相似文献   

9.
10.
11.
12.
The HER-2 gene is overexpressed in a subset of breast, ovarian, lung, and pancreatic cancers. Antisense oligonucleotides suppress gene expression depending on the stability of the DNA.RNA hybrids formed at the target site. Polyamines, the cellular cations that interact with DNA and RNA, may influence hybrid stability in the cell. Therefore, we studied the ability of natural polyamines (putrescine, spermidine, and spermine) and a series of their structural analogues to stabilize DNA.RNA and RNA.RNA duplexes using melting temperature (T(m)) measurements and circular dichroism (CD) spectroscopy. Phosphodiester (PO) and phosphorothioate (PS) oligonucleotides (ODNs) (15 nucleotides, 5'-CTCCATGGTGCTCAC-3') targeted to the initiation codon region of the HER-2 mRNA, and complementary RNA and DNA ODNs, were used in this study. The relative order of thermal stability was as follows: RNA.RNA > PO-DNA.RNA > PO-DNA.PO-DNA > PS-DNA.RNA > PS-DNA.PO-DNA > PS-DNA.PS-DNA. The ability of polyamines to stabilize the duplexes improved with the cationicity of the polyamine, with hexamines being more effective than pentamines, which in turn were more effective than tetramines and triamines. However, chemical structural effects were clearly evident with isovalent homologues of spermidine and spermine. CD spectra showed B and A conformations, respectively, for the DNA and RNA helices. DNA.RNA hybrids adopted an intermediate structure between the B and A forms. These data help us to understand the role of endogenous polyamines in DNA.RNA hybrid stabilization, and provide information for designing novel polyamines to facilitate the use of antisense ODNs for controlling HER-2 gene expression.  相似文献   

13.
14.
Cleavage of DNA.RNA hybrids by type II restriction enzymes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The action of a number of restriction enzymes on DNA.RNA hybrids has been examined using hybrids synthesised with RNAs of cucumber mosaic virus as templates. The enzymes EcoRI, HindII, SalI, MspI, HhaI, AluI, TaqI and HaeIII cleaved the DNA strand of the hybrids (and possible also the RNA strand) into specific fragments. For four of these enzymes, HhaI, AluI, TaqI and HaeIII, comparison of the restriction fragments produced with the known sequences of the viral RNAs confirmed that they were recognising and cleaving the DNA strand of the hybrids at their correct recognition sequences. It is likely that the ability to utilise DNA.RNA hybrids as substrates is a general property of Type II restriction enzymes.  相似文献   

15.
Modified DNA carrying an azobenzene was successfully applied to the photo-regulation of DNA/RNA hybridization. When the azobenzene was isomerized from trans- to cis-form on UV-irradiation, the melting temperature of the duplex was significantly lowered. This process was totally reversible so that the Tm increased by cis-->trans isomerization induced by visible light irradiation.  相似文献   

16.
Reliable methods of machine-aided RNA synthesis have been established to complement those for DNA assembly. Oligonucleotides containing thio-modified backbones and 2'-O-alkyl sugars head the list of many newly available analogues. Biotin, fluorescent agents and many reporter groups can be conveniently introduced into oligonucleotides in multiples by phosphoramidite or H-phosphonate chemistry.  相似文献   

17.
DNA strand specificity in promoter recognition by RNA polymerase.   总被引:4,自引:3,他引:4       下载免费PDF全文
C S Park  Z Hillel    C W Wu 《Nucleic acids research》1980,8(23):5895-5912
DNA strand and enzyme subunit specificities involved in the interaction between E. coli RNA polymerase and T7 DNA were studied by photo-crosslinking techniques. In non-specific enzyme-DNA complexes, subunits, sigma, beta, and beta' were crosslinked to both strands of the DNA. Under conditions leading to specific enzyme-promoter complexes, however, only sigma and beta subunits were crosslinked. The sigma subunit was crosslinked preferentially to the non-sense strand at promoter sites. No such strand specificity was observed for the beta subunit. These results provide insight into the molecular mechanism of promoter recognition and indicate that the interaction between RNA polymerase and DNA template is different at promoters and at non-specific sites.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号