首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As and EphAs. We provide evidence that ephrin-A5 is required for glucose-stimulated insulin secretion. We further show that EphA-ephrin-A-mediated beta cell communication is bidirectional: EphA forward signaling inhibits insulin secretion, whereas ephrin-A reverse signaling stimulates insulin secretion. EphA forward signaling is downregulated in response to glucose, which indicates that, under basal conditions, beta cells use EphA forward signaling to suppress insulin secretion and that, under stimulatory conditions, they shift to ephrin-A reverse signaling to enhance insulin secretion. Thus, we explain how beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis.  相似文献   

2.
The stimulatory effect of dopamine through dopamine D2 receptor on glucose-induced insulin secretion was studied in the pancreatic islets in vitro. Dopamine significantly stimulated insulin secretion at a concentration of 10-8 M in the presence of high glucose (20 mM). The higher concentrations of dopamine (10(-7)-10(-4)) inhibited glucose-induced insulin secretion in the presence of both 4 mM and 20 mM glucose. Stimulatory and inhibitory effect of dopamine on glucose-induced insulin secretion was reverted by the addition of dopamine D2 receptor antagonists such as butaclamol and sulpiride. Norepinephrine (NE) at 10(-4) M concentration inhibited the dopamine uptake as well as its stimulatory effect at 10(-8) M concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose-induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.  相似文献   

3.
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.  相似文献   

4.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   

5.
6.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

7.
The effects of glucose, sulfated cholecystokinin-octapeptide (CCK-8), or carbachol on insulin secretory dynamics were studied in pancreatic islets isolated from 1- and 3-day-old neonatal rats. When challenged with glucose, 1-day islets responded with a definite first phase and elevated secretion during the latter part of the stimulation period; 3-day islets had a first phase and a rising, sustained second phase. The presence of stimulatory concentrations of CCK-8 or carbachol in addition to glucose caused dramatic changes in the release pattern in both islet populations. In 1-day islets, carbachol stimulated mainly first phase secretion whereas CCK-8 enhanced first phase release and produced a definite second phase response. The two secretagogues increased significantly both phases of release in 3-day islets with no differences between the two agents in their effects. These results indicate that CCK-8 and carbachol differentially stimulate neonatal insulin secretion, possibly through different steps in the stimulus-secretion pathway. They also suggest that the cellular mechanism for second phase release is present in 1-day islets and can be activated by CCK-8.  相似文献   

8.
Human fetal pancreatic islets were isolated from 16- to 20-week-old fetuses by a collagenase technique and cultured 48 hr in RPMI 1640 containing 10% human adult serum and unlabeled 0 to 5 micrograms cyclosporine A (CsA)/ml. Insulin secretory capacity of human fetal islets was expressed as a fractional stimulatory ratio FSR = F2/F1 of the fractional secretion rates during two successive 1 hr static incubations first with 2 mM glucose (F1) to stabilize secretion followed by maximal stimulus, i.e., 25 mM glucose plus 10 mM L-leucine and 10 mM L-arginine (F2). Unlabeled CsA at the above concentrations had no significant effects on the insulin secretory capacity expressed by FSR-values. Studies of net uptake of 3H-CsA by islets cultured for varying periods up to 40 hr and expressed as picomole 3H-CsA per picomole islet insulin content demonstrated that uptake rate was slow and did not reach isotopic equilibrium over the 40 hr of culture. When isolated fetal islets were cultured for 48 hr in the presence of 3H-CsA and varying concentrations of unlabeled CsA it was found during two successive 1 hr static incubations that fetal islets secrete insulin concomitantly with 3H-CsA following maximal stimulus for secretion. An optimal secretory molar ratio of 3H-CsA to insulin of 4.0 +/- 1.3 (n = 7) was found after islets were cultured 48 hr in the presence of a saturating 2.128 micrograms 3H-CsA per milliliter culture medium. In three successive 30-min static incubations of 3H-CsA loaded islets, first with low glucose, followed by high glucose plus L-arginine and L-leucine, and finally with high glucose plus L-arginine and L-leucine and 10 mM theophylline, the proportional fractional secretion rates of insulin and 3H-CsA were of the same magnitude. It is concluded that human fetal pancreatic islets during 48 hr of culture in the presence of pharmacologically relevant concentrations of CsA can internalize the drug, which is compartmentalized and concomitantly secreted with insulin following maximal stimuli. Transplanted human fetal islets utilized as delivering units for CsA could be beneficial for the induction of immunotolerance to allografted fetal islets.  相似文献   

9.
Isolated rat pancreatic islets were prelabeled with [33Pi] and then incubated with basal (2.8 mM) or stimulatory (16.7 mM) glucose in the presence of [32Pi]. Subsequent changes in islet [33P] and [32P] were utilized as respective indices of net efflux and influx. During the initial eight min, (the period usually spanning the first phase of stimulated insulin secretion) efflux was significantly greater with 16.7 than 2.8 mM glucose whereas the lesser amount of phosphate influx did not differ in the two systems. During the subsequent seven min (a time usually associated with the onset of the second phase of stimulated insulin secretion), efflux was dampened in the presence of 16.7 mM glucose and Pi influx significantly exceeded the 2.8 mM glucose values. Thus, acute stimulation with glucose effects an initial phosphate depletion in pancreatic islets as efflux exceeds influx and repletion occurs thereafter as efflux is attenuated and influx is enhanced. These oscillations in islet phosphate may contribute to the biphasic pattern of glucose-stimulated insulin release.  相似文献   

10.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

11.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product.  相似文献   

12.
Glucose-induced insulin secretion from islets cultured in the presence of interleukin-6 (IL-6) for 12-24 h was inhibited to a similar extent as when islets were treated with interleukin-1 beta (IL-1 beta). However, unlike IL-1 beta, IL-6 did not potentiate insulin secretion during an acute (30 min) exposure of islets to the cytokine, nor did it inhibit DNA synthesis during a 24 h culture period. A 12 h pretreatment of islets with tumour necrosis factor-alpha (TNF-alpha) combined with IL-1 beta potentiated the inhibitory effect of IL-1 beta on secretion, such that 20 mM-glucose-induced insulin secretion was abolished. No synergistic inhibition of secretion was observed with TNF-alpha and IL-6. However, IL-1 beta and IL-6 were found to inhibit insulin secretion in an additive manner. These results suggest that IL-6 inhibits insulin secretion in a manner distinct from that of IL-1 beta, and that IL-6 is unlikely to mediate the inhibitory effects of IL-1 beta or TNF-alpha on rat islets of Langerhans.  相似文献   

13.
The aim of this investigation was to further characterize the process of interleukin-1 beta (IL-1 beta) induced nitric oxide production in isolated pancreatic islets. It was found that both IL-1 beta and nitroprusside increased islet nitrite production. This effect was paralleled by inhibition of islet aconitase activity and glucose oxidation rates. Neither trifluoroperazinen or aminopterin could prevent the IL-1 beta induced increase in nitrite production, aconitase inhibition and decrease in glucose oxidation rates. In a second series of experiments, isolated mouse pancreatic islets were exposed to IL-1 beta for 24 h and subsequently used for nitrite production, aconitase activity and glucose oxidation determinations. The islets responded to IL-1 beta with an increased nitrite production and a decreased activity of aconitase, whereas the islet glucose oxidation rates were not decreased. It is concluded that IL-1 beta in both rat and mouse islets induces nitric oxide formation and that this induction leads to the inhibition of the Krebs cycle enzyme aconitase. In rat islets this probably leads to an inhibited insulin secretion, whereas IL-1 beta in mouse islets suppresses insulin secretion by a non-mitochondrial mechanism.  相似文献   

14.
The NADH shuttle system is composed of the glycerol phosphate and malate-aspartate shuttles. We generated mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. Application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle, to mGPDH-deficient islets demonstrated that the NADH shuttle system was essential for coupling glycolysis with activation of mitochondrial ATP generation to trigger glucose-induced insulin secretion. The present study revealed that blocking the NADH shuttle system severely suppressed closure of the ATP-sensitive potassium (K(ATP)) channel and depolarization of the plasma membrane in response to glucose in beta cells, although properties of the K(ATP) channel on the excised beta cell membrane were unaffected. In mGPDH-deficient islets treated with aminooxyacetate, Ca(2+) influx through the plasma membrane induced by a depolarizing concentration of KCl in the presence of the K(ATP) channel opener diazoxide restored insulin secretion. However, the level of the secretion was only approximately 40% of wild-type controls. Thus, glucose metabolism through the NADH shuttle system leading to efficient ATP generation is pivotal to activation of both the K(ATP) channel-dependent pathway and steps distal to an elevation of cytosolic Ca(2+) concentration in glucose-induced insulin secretion.  相似文献   

15.
Insulin secretion by intact islets, dispersed islet cells and dispersed cells allowed to reaggregate was compared in perifusion. Although single cells and aggregates showed basal insulin secretion and a prompt response to glucose challenge, basal secretion, peak insulin secretion and total insulin secretion during a 60 minute stimulation were profoundly less than those activities of intact islets. These results suggest that dispersed beta cells are responsive to glucose as a secretagogue, but the magnitude of the response is greatly diminished and not restored by simple cell contact.  相似文献   

16.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

17.
D J Kawahara  J S Kenney 《Cytokine》1991,3(2):117-124
Species differences in sensitivity to human recombinant cytokines were observed when human or rat islets were co-cultured with human recombinant cytokines for 6 days. Suppression of both human and rat islet insulin secretion resulted from co-culture with recombinant interleukin-1 alpha (rIL-1 alpha) or interleukin-1 beta (rIL-1 beta); however, direct rIL-1 alpha and rIL-1 beta cytotoxicity was seen with rat islets but not with human islets. Human islet insulin secretion was also suppressed during co-culture with recombinant tumor necrosis factor (rTNF) or interferon (rIFN), but not with lymphotoxin (rLT) or rIL-6; rat islet insulin secretion was not suppressed by any of these cytokines. No direct cytotoxic effects resulted from co-culture of human islets with rLT, rTNF, rIFN, or rIL-6; rLT was slightly cytotoxic for rat islets. Human islet cytotoxic synergy occurred between rLT and rIL-1 alpha, rIL-1 beta, or rIFN; synergy in suppression of human islet insulin secretion occurred between rLT and rIL-1 beta, and between rIFN and rTNF. Pretreatment of rIL-1 with monoclonal antibody (mAb) specific for non-crossreactive epitopes on rIL-1 alpha (H43 and H12) or rIL-1 beta (H34 and H21) prevented islet cytotoxic synergy between rIL-1 alpha or rIL-1 beta, respectively, and rLT. Although all four mAb's neutralize the thymocyte and fibroblast stimulatory activities of rIL-1 alpha or rIL-1 beta, mAb H21 does not neutralize rIL-1 beta activity against rat islets. Implications for cytokine-mediated islet cytotoxicity and suppression of insulin secretion are discussed.  相似文献   

18.
High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1beta (IL-1beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1beta for 1 h or 24 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1beta-induced nitric oxide (NO) production, lower inhibition of D-[U(14)C]-glucose oxidation to (14)CO(2) and less pronounced effect of IL-1beta on alpha-ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K(+) the inhibitory effect of IL-1beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta-cells of the deleterious effect of IL-1beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca(2+) homeostasis.  相似文献   

19.
We have studied acute effects of the PPARgamma agonist pioglitazone in vitro on human islets from both non-diabetic and type 2 diabetic subjects. In 5 mM glucose, pioglitazone caused a transient increase in insulin secretion in non-diabetic, but not diabetic, islets. Continuous presence of the drug suppressed insulin release in both non-diabetic and diabetic islets. In islets from non-diabetic subjects, both high glucose and tolbutamide-stimulated insulin secretion was inhibited by pioglitazone. When islets were continuously perifused with 5 mM glucose, short-term pretreatment with pioglitazone caused approximately 2-fold increase in insulin secretion after drug withdrawal. Pioglitazone pretreatment of diabetic islets restored their glucose sensitivity. Examination of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in non-diabetic islets revealed slight Ca(2+) transient by pioglitazone at 3 mM glucose with no significant changes at high glucose. Our data suggest that short-term pretreatment with pioglitazone primes both healthy and diabetic human islets for enhanced glucose-sensitive insulin secretion.  相似文献   

20.
Insulin secretion by the beta cell depends on anaplerosis in which insulin secretagogues are metabolized by mitochondria into molecules that are most likely exported to the extramitochondrial space where they have signaling roles. However, very little is known about the products of anaplerosis. We discovered an experimental paradigm that has begun to provide new information about these products. When various intracellular metabolites were applied in combination to overnight-cultured rat or human pancreatic islets or to INS-1 832/13 cells, they interacted synergistically to strongly stimulate insulin release. When these same metabolites were applied individually to these cells, insulin stimulation was poor. Discerning the contributions of the individual compounds to metabolism has begun to allow us to dissect some of the pathways involved in insulin secretion, which was not possible from studying individual secretagogues. Monomethyl succinate (MMS) combined with a barely stimulatory concentration of alpha-ketoisocaproate (KIC) (2 mm) stimulated insulin release in cultured rat islets 18-fold (versus 21-fold for 16.7 mm glucose). MMS plus low glucose (2 mm) or pyruvate (5 mm) gave 11- and 9-fold stimulations. These agents also potentiated MMS-induced insulin release in fresh islets, and KIC plus MMS gave synergistic insulin release in cultured human islets. In INS-1 cells, neither MMS nor KIC (10 mm) was an insulin secretagogue, but when added together KIC (2 mm) and MMS stimulated insulin release 7-fold (versus 12-fold for glucose). In islets and INS-1 cells, conditions that stimulated insulin release caused large relative increases in acetoacetate, which is a precursor of pathways to short chain acyl-CoAs. Liquid chromatography-tandem mass spectrometry measurements of acetyl-CoA, acetoacetyl-CoA, succinyl-CoA, hydroxymethylglutaryl-CoA, and malonyl-CoA confirmed that they were increased by insulin secretagogues. The results suggest a new mechanism of insulin secretion in which anaplerosis increases short chain acyl-CoAs that have roles in insulin exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号