首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Runx2 integrates estrogen activity in osteoblasts   总被引:6,自引:0,他引:6  
  相似文献   

4.
5.
6.
7.
8.
9.
10.
Histone deacetylases (HDACs) deacetylate lysine residues of histone and non-histone proteins and thereby regulate the cell-cycle, gene expression, and several other processes. We have analyzed the effects of HDAC1 on Runx2-mediated regulation of osteopontin (OPN) promoter activation and gene expression in mesenchymal progenitor C3h10t1/2 cells and show that co-expression of HDAC1 along with Runx2 results in down-regulation of Runx2-induced OPN mRNA expression during both the proliferation and differentiation stages of C3h10t1/2 cells. Luciferase assay results revealed that HDAC1 efficiently down-regulated Runx2-stimulated OPN promoter activity in a dose-dependent manner whereas TSA relieved the HDAC1-mediated repression and up-regulated the Runx2-induced OPN promoter activity and mRNA expression. In vivo HDAC1 co-localized and physically interacted with Runx2 and associated with the OPN promoter. Thus, HDAC1 not only plays a critical role in regulation of Runx2-stimulated expression of osteogenic genes, like OPN, but also regulate the proliferation and differentiation stages of mesenchymal progenitor cells, such as C3h10t1/2.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Two major isoforms of the Runx2 gene are expressed by alternative promoter usage: Runx2 type I (Runx2-I) is derived from the proximal promoter (P2), and Runx2 type II (Runx2-II) is produced by the distal promoter (P1). Our previous results indicate that Dlx5 mediates BMP-2-induced Runx2 expression and osteoblast differentiation (Lee, M.-H., Kim, Y-J., Kim, H-J., Park, H-D., Kang, A-R., Kyung, H.-M., Sung, J-H., Wozney, J. M., Kim, H-J., and Ryoo, H-M. (2003) J. Biol. Chem. 278, 34387-34394). However, little is known of the molecular mechanisms by which Dlx5 up-regulates Runx2 expression in BMP-2 signaling. Here, Runx2-II expression was found to be specifically stimulated by BMP-2 treatment or by Dlx5 overexpression. In addition, BMP-2, Dlx5, and Runx2-II were found to be expressed in osteogenic fronts and parietal bones of the developing cranial vault and Runx2-I and Msx2 in the sutural mesenchyme. Furthermore, Runx2 P1 promoter activity was strongly stimulated by Dlx5 overexpression, whereas Runx2 P2 promoter activity was not. Runx2 P1 promoter deletion analysis indicated that the Dlx5-specific response is due to sequences between -756 and -342 bp of the P1 promoter, where three Dlx5-response elements are located. Dlx5 responsiveness to these elements was confirmed by gel mobility shift assay and site-directed mutagenesis. Moreover, Msx2 specifically suppressed the Runx2 P1 promoter, and the responsible region overlaps with that recognized by Dlx5. In summary, Dlx5 specifically transactivates the Runx2 P1 promoter, and its action on the P1 promoter is antagonized by Msx2.  相似文献   

20.
Upstream and downstream targets of RUNX proteins   总被引:23,自引:0,他引:23  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号