首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have shown that the experimental elevation of circulating levels of testosterone reduces parental behaviour in male birds, particularly the provisioning of young. The mechanisms responsible for this change in behaviour are not fully understood. In this study, we examine the effects of elevated testosterone on food consumption and prey selection, both of which have potential consequences for nestling provisioning behaviour. We manipulated testosterone and performed two experiments on a captive, non-breeding population of male dark-eyed juncos ( Junco hyemalis ) on long day-lengths. In the first experiment, we subjected juncos to 3 h of food deprivation and compared food consumption and prey size selection by males with elevated testosterone (testosterone males) to that of control males. Testosterone males consumed more food than control males and showed a preference for larger prey. In a second experiment in which small prey were more abundant than large prey, food consumption and prey size preferences did not differ between testosterone and control males. We also manipulated the duration of food deprivation in the second experiment. Males of both treatments consumed more small prey under conditions of mild (1 h) or moderate (5 h) food deprivation and consumed more large prey under conditions of intermediate (3 h) food deprivation. We discuss our results and the effects that testosterone has on self-maintenance behaviour and male parental effort.  相似文献   

2.
Testosterone is important in mediating investment in competing activities such as territoriality, parental care, and maintenance behavior. Most studies of testosterone function have focused on temperate species and less is known about the role of testosterone in territoriality or variation in mating systems of tropical species. Results of studies of tropical species with year‐round territoriality indicate that territorial aggression during the non‐breeding season is maintained with low levels of testosterone, and increased levels of testosterone in males during the breeding season may increase mating opportunities or aid in competition for mates. We studied seasonal variation in testosterone levels of male Red‐throated Ant‐tanagers (Habia fuscicauda), a socially monogamous species with year‐round territoriality and with high levels of extra‐pair matings (41% of young), to determine if testosterone levels increased during the breeding season. We captured males during the non‐breeding and breeding seasons and collected blood samples for hormone analysis. We found that mean testosterone concentrations were low during the non‐breeding season (0.18 ± 0.05 [SD] ng/ml, range = 0.11–0.31 ng/ml), and significantly higher during the breeding season (2.37 ± 2.47 ng/ml, range = 0.14–6.28 ng/ml). Testosterone levels of breeding males were not related to aggression levels as measured by attack rates toward a stuffed decoy or singing rates during simulated territorial intrusions. These results suggest that the higher testosterone levels of breeding male Red‐throated Ant‐tanagers may be important in an extra‐pair mating context, possibly in display behavior or mate attraction, but additional study is needed to clarify the role of testosterone during the breeding season.  相似文献   

3.
Progesterone, 17-hydroxyprogesterone, androstenedione, 5 alpha-dihydrotestosterone, dehydroepiandrosterone, testosterone and oestradiol concentrations in the plasma were measured by simultaneous radioimmunoassay in males of the lizard Podarcis s. sicula. Hormonal determinations were performed at monthly intervals from January to December (except for August). Testosterone and androstenedione reached peak values of 174.8 ng/ml and 21.4 ng/ml in the mating season (spring) and then testosterone fell abruptly to 5.9 ng/ml in June remaining at this level during hibernation when dehydroepiandrosterone (DHA) reached a maximal level of 28.5 +/- 9.3 ng/ml. Castration resulted in a marked decrease of testosterone, androstenedione, dihydrotestosterone and DHA values, with DHA being significantly lowered only during the winter season. In castrated animals, however, testosterone and androstenedione persisted conspicuously in the plasma during the breeding period, suggesting that adrenal sex steroid output may change during the annual reproductive cycle. In intact animals, progesterone and oestradiol exhibited peak values during the refractory period after the mating season. We suggest a probable role of oestradiol in the induction of the refractory period in this lizard.  相似文献   

4.

Background

There has been a dramatic escalation in sugar intake in the last few decades, most strikingly observed in the adolescent population. Sugar overconsumption has been associated with several adverse health consequences, including obesity and diabetes. Very little is known, however, about the impact of sugar overconsumption on mental health in general, and on reward-related behavioral disorders in particular. This study examined in rats the effects of unlimited access to sucrose during adolescence on the motivation for natural and pharmacological rewards in adulthood.

Methodology/Principal Findings

Adolescent rats had free access to 5% sucrose or water from postnatal day 30 to 46. The control group had access to water only. In adulthood, rats were tested for self-administration of saccharin (sweet), maltodextrin (non-sweet), and cocaine (a potent drug of abuse) using fixed- and progressive-ratio schedules, and a concentration-response curve for each substance. Adult rats, exposed or not exposed to sucrose, were tested for saccharin self-administration later in life to verify the specificity of adolescence for the sugar effects. Sugar overconsumption during adolescence, but not during adulthood, reduced the subsequent motivation for saccharin and maltodextrin, but not cocaine. This selective decrease in motivation is more likely due to changes in brain reward processing than changes in gustatory perception.

Conclusions/Significance

Sugar overconsumption induces a developmental stage-specific chronic depression in reward processing that may contribute to an increase in the vulnerability to reward-related psychiatric disorders.  相似文献   

5.

Rationale

Cocaine dependence is characterized by compulsive drug taking that supercedes other recreational, occupational or social pursuits. We hypothesized that rats vulnerable to addiction could be identified within the larger population based on their preference for cocaine over palatable food rewards.

Objectives

To validate the choice self-administration paradigm as a preclinical model of addiction, we examined changes in motivation for cocaine and recidivism to drug seeking in cocaine-preferring and pellet-preferring rats. We also examined behavior in males and females to identify sex differences in this “addicted” phenotype.

Methods

Preferences were identified during self-administration on a fixed-ratio schedule with cocaine-only, pellet-only and choice sessions. Motivation for each reward was probed early and late during self-administration using a progressive-ratio schedule. Reinstatement of cocaine- and pellet-seeking was examined following exposure to their cues and non-contingent delivery of each reward.

Results

Cocaine preferring rats increased their drug intake at the expense of pellets, displayed increased motivation for cocaine, attenuated motivation for pellets and greater cocaine and cue-induced reinstatement of drug seeking. Females were more likely to develop cocaine preferences and recidivism of cocaine- and pellet-seeking was sexually dimorphic.

Conclusions

The choice self-administration paradigm is a valid preclinical model of addiction. The unbiased selection criteria also revealed sex-specific vulnerability factors that could be differentiated from generalized sex differences in behavior, which has implications for the neurobiology of addiction and effective treatments in each sex.  相似文献   

6.
The purpose of the present study was to investigate whether Lewis (LEW) and spontaneously hypertensive rats (SHR), characterized in numerous behavioral tests as strains with high-anxiety and low-anxiety, respectively, could differ in their sensitivity to the effects of ethanol in the elevated plus maze (EPM) and the open field (OF), two classical models of anxiety/emotionality, as well as in the acquisition of ethanol drinking behavior. It was also of interest to examine the relationship between sweet and bitter fluids preference and ethanol intake. SHR and LEW rats were given saline or ethanol injections (0.6 or 1.2 g/kg, ip.) and tested in the EPM and OF. Subsequently the same animals were given continuous free choice between water and ethanol solution (2-8%). Additional groups of animals were exposed to a free-choice regimen between saccharin (0.002-0.09%) or quinine (0.0001-0.0015%) and water. The low dose of ethanol (0.6 g/kg) induced anxiolytic-like effects and intensive locomotor activation mainly in SHR rats tested in the OF arena. Overall, LEW counterparts were unaffected in OF test. In oral self-administration paradigm, SHR rats consumed significantly more ethanol than LEW rats. Concerning other solutions, SHR rats consumed large amounts of saccharin compared with LEW rats. These data indicate that the SHR preference for ethanol intake may be positively related to their differential sensitivity to the anxiolytic/stimulant effects of ethanol and to the sensitivity of this strain for saccharin reinforcement. In addition, these findings provide evidence that the SHR strain may represent a useful genetic and pharmacological tool to investigate ethanol drinking traits.  相似文献   

7.
At replacement doses, testosterone produces only modest increases in muscle strength and bone mineral density in older hypogonadal men. Although higher doses of testosterone are more anabolic, there is concern over increased adverse effects, notably prostate enlargement. We tested a novel strategy for obtaining robust anabolic effects without prostate enlargement. Orchiectomized (ORX) male rats were treated for 56 days with 1.0 mg testosterone/day, with and without 0.75 mg/day of the 5alpha-reductase inhibitor MK-434. Testosterone administration elevated the prostate dihydrotestosterone concentration and caused prostate enlargement. Both effects were inhibited by MK-434. ORX produced a catabolic state manifested in reduced food intake, blunted weight gain, reduced hemoglobin concentration, decreased kidney mass, and increased bone resorption, and in the proximal tibia there was both decreased cancellous bone volume and a decreased number of trabeculae. In soleus and extensor digitorum longus muscles, ORX reduced both the percentage of type I muscle fibers and the cross-sectional area of type 1 and 2 fibers. Testosterone administration caused a number of anabolic effects, including increases in food intake, hemoglobin concentration, and grip strength, and reversed the catabolic effects of ORX on bone. Testosterone administration also partially reversed ORX-induced changes in muscle fibers. In contrast to the prostate effects of testosterone, the effects on muscle, bone, and hemoglobin concentration were not blocked by MK-434. Our study demonstrates that the effects of testosterone on muscle and bone can be separated from the prostate effects and provides a testable strategy for combating sarcopenia and osteopenia in older hypogonadal men.  相似文献   

8.
Primeaux SD  York DA  Bray GA 《Peptides》2006,27(7):1644-1651
The orexigenic effects of neuropeptide Y (NPY) are mediated through the hypothalamus, while the anxiolytic effects of NPY appear to be mediated through the amygdala. We hypothesized that intra-amygdalar administration of NPY might alter food preference without changing total food intake. Neuropeptide Y was administered into the central nucleus of the amygdala in both satiated and overnight-fasted rats, and intake and preference for a high fat diet (56%)/low carbohydrate (20%) diet or a low fat (10%)/high carbohydrate (66%) diet were measured. Intra-amygdalar NPY administration in satiated rats did not change total caloric intake, but it did produce a dose-dependent decrease in intake of and preference for high fat diet relative to low fat diet over 24 h. In overnight-fasted rats, intra-amygdalar NPY also decreased the intake and preference for a high fat diet relative to low fat diet over 24 h, without altering total caloric intake. Intra-amygdalar NPY administration did not produce conditioned taste aversions to a novel saccharin solution. These results suggest that amygdalar NPY may have a role in macronutrient selection, without altering total caloric intake.  相似文献   

9.
The influence of the steroid hormones testosterone and corticosterone on energy metabolism and activity of birds is largely enigmatic. We measured resting metabolic rate during night and day in 12 long-term castrated and 12 intact male white-crowned sparrows (Zonotrichia leucophrys gambelii) under short-day (8:16 SD), long-day (20:4 LD), LD+testosterone implant and LD−testosterone implant conditions. Each male was sequentially measured under all four conditions. Photostimulation increased testosterone, resting metabolic rate, food intake, hopping activity and body mass in castrates and intact males. Surprisingly, testosterone levels and metabolic rates did not differ between intact and castrated males. Testosterone implantation increased activity and food intake, but decreased body mass and resting metabolic rate in both groups. Removing testosterone implants reversed the effects on resting metabolic rate, activity and food intake. Corticosterone levels, measured immediately at the end of metabolism measurements, showed birds were not stressed. Corticosterone had no apparent relationship with resting metabolic rate and there was no interaction between corticosterone and testosterone. Overall, positive changes in testosterone levels resulted in a decrease of resting metabolic rate. We speculate that testosterone increases activity, and birds compensate for increased activity metabolism by reducing resting metabolic rate. Accepted: 18 July 1999  相似文献   

10.
The rewarding value of female sexual stimuli develops across puberty, as sexually-naïve adult, but not prepubertal, male hamsters show a conditioned place preference (CPP) for both vaginal secretions and a receptive female. Similarly, only adults show an endogenous testosterone surge when they encounter vaginal secretions. Testosterone by itself can condition a place preference in male rodents. Therefore, Experiment 1 assessed whether the endogenous testosterone surge elicited by vaginal secretions is necessary to show a CPP. Both gonad-intact and gonadectomized, testosterone-treated adult males showed a CPP for vaginal secretions, indicating that the rewarding value of this social cue is independent of an endogenous testosterone surge. However, organizational effects of pubertal testosterone could be necessary for adolescent development of social reward, as pubertal testosterone organizes adult-typical expression of sexual behavior. To investigate this possibility, in Experiment 2, sexually-naïve prepubertal and adult male hamsters were gonadectomized and received testosterone-filled capsules four weeks later. Testing began after two weeks of testosterone replacement. Adult males showed a CPP for both vaginal secretions and a receptive female, whether or not they experienced pubertal testosterone. Thus, the acquisition of positive valence of sexual stimuli is not organized by pubertal testosterone. Taken together, the ability of female sexual stimuli to serve as an unconditioned reward to adult male hamsters is independent of the chemosensory-induced endogenous testosterone surge and also organizational effects of pubertal testosterone. Instead, sexual reward may be dependent either on activational effects of testosterone or gonadal hormone-independent mechanisms.  相似文献   

11.
The hypothalamic neuropeptide orexin (hypocretin) mediates reward related to drugs of abuse and food intake. However, a role for orexin in sexual reward has yet to be investigated. Orexin neurons are activated by sexual behavior, but endogenous orexin does not appear to be essential for sexual performance and motivation in male rats. Therefore, the goal of the current study was to test the hypothesis that orexin is critically involved in processing of sexual reward in male rats. First, it was demonstrated following exposure to conditioned contextual cues associated with sexual behavior in a conditioned place preference paradigm that cFos expression is induced in orexin neurons, indicating activation of orexin neurons by cues predicting sexual reward. Next, orexin-cell specific lesions were utilized to determine the functional role of orexin in sexual reward processing. Hypothalami of adult male rats were infused with orexin-B-conjugated saporin, resulting in greater than 80% loss of orexin neurons in the perifornical-dorsomedial and lateral hypothalamus. Orexin lesions did not affect expression of sexual behavior, but prevented formation of conditioned place preference for a sexual behavior paired chamber. In contrast, intact sham-treated males or males with partial lesions developed a conditioned place preference for mating. Orexin lesioned males maintained the ability to form a conditioned place aversion to lithium chloride-induced visceral illness, indicating that orexin lesions did not disrupt associative contextual memory. Overall, these findings suggest that orexin is not essential for sexual performance or motivation, but is critical for reward processing and conditioned cue-induced seeking of sexual behavior.  相似文献   

12.
Two experiments assessed the effects of neonatal testosterone treatment on paced mating behavior and conditioned place preference in female rats. In both experiments, females received s.c. injections of 5.0 microg testosterone propionate or oil vehicle at three days postpartum. As adults, females were ovariectomized and given s.c. injections of 10 microg estradiol benzoate and 500 microg progesterone, 48 and 4 h before mating, respectively. In Experiment 1, TP- and Oil-treated females exhibited similar high levels of lordosis responsiveness, but TP-treated females showed increased intervals between mounts and between intromissions in paced and non-paced mating conditions compared to control females. The effect was particularly pronounced during paced mating, when contact return latencies were increased approximately 2-fold by TP treatment. TP-treated females showed exaggerated pacing behavior, showing significantly greater return latencies after intromissions than Oil-treated females. In Experiment 2, TP- and Oil-treated groups were tested in a conditioned place preference paradigm to determine if the behavioral changes observed in Experiment 1 were in part a result of changes in the perceived reward produced by paced mating. TP treated and control females developed equivalent preferences for places associated with paced but not non-paced mating, indicating that neonatal TP treatment at this dosage does not disrupt or enhance the conditioned place preference induced by paced mating. The results of the two experiments demonstrate that neonatal TP treatment alters the display of pacing behavior but not the reward state induced by paced mating, and suggest that TP affects neural substrates involved in performance of paced mating without effects on those controlling lordosis or place preference conditioning.  相似文献   

13.
Glucagon-like-peptide-1 (GLP-1) is a gut- and neuro-peptide with an important role in the regulation of food intake and glucose metabolism. Interestingly, GLP-1 receptors (GLP-1R) are expressed in key mesolimbic reward areas (including the ventral tegmental area, VTA), innervated by hindbrain GLP-1 neurons. Recently GLP-1 has emerged as a potential regulator of food reward behavior, an effect driven by the mesolimbic GLP-1Rs. Its role in other reward behaviors remains largely unexplored. Since a considerable overlap has been suggested for circuitry controlling reward behavior derived from food and alcohol we hypothesized that GLP-1 and GLP-1Rs could regulate alcohol intake and alcohol reward. We sought to determine whether GLP-1 or its clinically safe stable analogue, Exendin-4, reduce alcohol intake and reward. To determine the potential role of the endogenous GLP-1 in alcohol intake we evaluated whether GLP-1R antagonist, Exendin 9-39, can increase alcohol intake. Furthermore, we set out to evaluate whether VTA GLP-1R activation is sufficient to reduce alcohol intake. Male Wistar rats injected peripherally with GLP-1 or Exendin-4 reduced their alcohol intake in an intermittent access two bottle free choice drinking model. Importantly, a contribution of endogenously released GLP-1 is highlighted by our observation that blockade of GLP-1 receptors alone resulted in an increased alcohol intake. Furthermore, GLP-1 injection reduced alcohol reward in the alcohol conditioned place preference test in mice. To evaluate the neuroanatomical substrate linking GLP-1 with alcohol intake/reward, we selectively microinjected GLP-1 or Exendin 4 into the VTA. This direct stimulation of the VTA GLP-1 receptors potently reduced alcohol intake. Our findings implicate GLP-1R signaling as a novel modulator of alcohol intake and reward. We show for the first time that VTA GLP-1R stimulation leads to reduced alcohol intake. Considering that GLP-1 analogues are already approved for clinical use, this places the GLP system as an exciting new potential therapeutic target for alcohol use disorders.  相似文献   

14.
Seasonal variation in fecal testosterone levels in free-ranging male Japanese macaques (Macaca fuscata) was examined with reference to their dominance rank and age class. Six adult (>or=7 years old, three higher-ranking and three lower-ranking) and four adolescent (5-6 years old, two higher-ranking and two lower-ranking) males were selected as target animals. Fecal samples of these males were collected during the first 3-5 days of each month and analyzed by the method developed by Barrett et al. [Primates 43:29-39, 2002 b]. Testosterone levels varied significantly across the 12 months, and were highest in the early and middle parts of the mating season (i.e., October and November). Higher-ranking adult males displayed a peak testosterone level in October, whereas lower-ranking adults had no clear peak in the mating season. Such a difference in testosterone peaks in males could provide higher-ranking males more opportunities to fertilize females at first ovulation in the mating season than lower-ranking males.  相似文献   

15.
Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta‐endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE?/?), resulting in hypothalamic‐specific POMC deficiency, were studied in short‐access (4‐h/day) drinking‐in‐the‐dark (DID, alcohol in one bottle, intermittent access (IA, 24‐h cycles of alcohol access every other day, alcohol vs. water in a two‐bottle choice) and alcohol deprivation effect (ADE) models. Wild‐type nPE+/+ exposed to 1‐week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE?/? mice of both sexes had less intake and less preference. Although nPE?/? showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3‐week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE?/? showed less escalation. Pharmacological blockade of mu‐opioid receptors with naltrexone reduced intake in nPE+/+ in a dose‐dependent manner, but had blunted effects in nPE?/? of both sexes. When alcohol was presented again after 1‐week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse‐like drinking), with more pronounced ADE in females, whereas nPE?/? did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol ‘binge’ drinking, escalation and ‘relapse’, probably via hypothalamic‐mediated mechanisms, with sex differences.  相似文献   

16.

Purpose

Pubertal dynamics plays an important role in physical and psychological development of children and adolescents. We aim to provide reference ranges of plasma testosterone in a large longitudinal sample. Furthermore, we describe a measure of testosterone trajectories during adolescence that can be used in future investigations of development.

Methods

We carried out longitudinal measurements of plasma testosterone in 2,216 samples obtained from 513 males (9 to 17 years of age) from the Avon Longitudinal Study of Parents and Children. We used integration of a model fitted to each participant’s testosterone trajectory to calculate a measure of average exposure to testosterone over adolescence. We pooled these data with corresponding values reported in the literature to provide a reference range of testosterone levels in males between the ages of 6 and 19 years.

Results

The average values of total testosterone in the ALSPAC sample range from 0.82 nmol/L (Standard Deviation [SD]: 0.09) at 9 years of age to 16.5 (SD: 2.65) nmol/L at 17 years of age; these values are congruent with other reports in the literature. The average exposure to testosterone is associated with different features of testosterone trajectories such as Peak Testosterone Change, Age at Peak Testosterone Change, and Testosterone at 17 years of age as well as the timing of the growth spurt during puberty.

Conclusions

The average exposure to testosterone is a useful measure for future investigations using testosterone trajectories to examine pubertal dynamics.  相似文献   

17.
One way to evaluate sexual arousal is by measuring approach behavior to sexual incentive stimuli. In our case we measure approach behavior to an originally non-preferred compartment which is associated with the physiological state induced by mating. This change of preference indicative of a positive affective (reward) state can be evaluated by conditioned place preference (CPP). We have shown that the CPP induced by paced mating is mediated by opioids. The administration of opioids also induces a reward state. The present study was designed to compare the rewarding properties of paced mating and a morphine injection. One group of females was allowed to pace the sexual interaction before being placed in the non-preferred compartment. In alternate sessions they received a morphine injection before being placed in the preferred compartment. In another group of females, the treatments were reversed. Only the females placed in the originally non-preferred compartment after paced mating changed their original preference, suggesting that paced mating induces a positive affective, reward, state of higher intensity than a morphine injection of 1 mg/kg. In a second experiment we determined if females allowed to pace the sexual interaction for 1 h would still developed CPP. No change in preference was observed in the females that mated for 1 h without pacing the sexual interaction. On the other hand, females that received between 10 and 15 paced intromissions as well as females that paced the sexual interaction for 1 h developed a clear CPP. The second experiment demonstrated that pacing is rewarding even in an extended mating session in which the females received around 25 intromissions and several ejaculations. These results further demonstrate the biological relevance associated with the ability of the female to space coital stimulation received during mating. This positive affective state will contribute to increase sexual arousal the next time a rat finds an appropriate mate.  相似文献   

18.
Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2-3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role for uncontrolled food intake.  相似文献   

19.
The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, an outbred strain of Long- Evans Tokushima Otsuka rat (LETO) that lacks CCK-1 receptor expression, is hyperphagic and develops obesity and type-2 diabetes. The present study sought to assess how OLETF rats alter intake, preference, and conditioned preference of palatable solutions after acute food deprivation. Our results show that after 24 h chow restriction, LETO rats increase both sucrose intake and two-bottle sucrose preference relative to their free-fed baseline, whereas OLETF rats do not increase sucrose intake (0.3 M or 1.0 M sucrose) or preference (1.0 M vs. 0.3 M sucrose) when they are food deprived. In contrast, OLETF rats exhibit a higher conditioned flavor preference when sucrose is used as unconditioned stimulus (US) relative to LETO rats, whether overnight food restricted (81% vs. 71% for OLETF and LETO rats, respectively) or free fed (82% vs. 54% for OLETF and LETO rats, respectively) during the test. When a noncaloric saccharin solution is used as US, OLETF rats show a higher preference for the saccharin-associated flavor relative to LETO rats when nondeprived (76% vs. 58% for OLETF and LETO rats, respectively); however, neither strain shows differential conditioned flavor preference for saccharin in the deprivation state during the test. These findings suggest that OLETF rats fail to integrate postabsorptive and orosensory effects of sucrose in a conditioning setting to influence intake. Thus, it appears that OLETF rats form preferences for sucrose based largely on orosensory and hedonic properties of the solution, rather than caloric value.  相似文献   

20.
Testicular Leydig cells secrete insulin-like peptide 3 (INSL3) and express its receptor, RXFP2. However, the effects of INSL3 on endocrine function of Leydig cells are unknown. The present study examines the effects of INSL3 on mouse Leydig cells taking testosterone and cAMP secretions as endpoints. Leydig cells were isolated from testicular interstitial cells obtained from 8-week-old male mice. Cells were then plated in the presence or absence of mouse, human, canine or bovine INSL3 (0-100ng/ml) for 18h in multiwell-plates (96 wells) in different cell densities (2500, 5000, 10,000 or 20,000 cells per well). The effects of bovine INSL3 (100ng/ml) on testosterone secretion by Leydig cells were examined in the presence or absence of, an adenylate cyclase inhibitor, SQ 22536 (1μM) or INSL3 antagonist (bovine and human; 100ng/ml). Testosterone and cAMP in spent medium were measured by enzyme immunoassay. All INSL3 species tested significantly stimulated the testosterone secretion in Leydig cells, and the maximum stimulation was observed with 100ng/ml bovine INSL3 at the lowest Leydig cell density (2500 cells per well). Moreover, bovine INSL3 (100ng/ml) significantly stimulated the cAMP production from Leydig cells maximally at 1h, and remained significantly elevated even at 18h. SQ 22536 and INSL3 antagonists (bovine and human) significantly reduced INSL3-stimulated testosterone secretion from Leydig cells. Taken together, stimulatory effects of INSL3 on testosterone secretion in Leydig cells are exerted via the activation of cAMP, suggesting a new autocrine function of INSL3 in males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号