首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observational studies with healthy persons demonstrated an inverse association of vitamin E with the risk of coronary heart disease or cancer, the outcome of large-scale clinical trials conducted to prove a benefit of vitamin E in the recurrence and/or progression of such disease, however, was disappointing. Vitamin E did not provide benefits to patients with cardiovascular diseases, cancer, diabetes or hypertension. Even harmful events and worsening of pre-existing diseases were reported, which are hard to explain. Since vitamin E is metabolized along the same routes as xenobiotics and induces drug-metabolizing enzymes in rodents, it is hypothesized that a supplementation with high dosages of vitamin E may also lead to an induction of the drug-metabolizing system in patients that depend on drug therapy. Compromising essential therapy might therefore outweigh any benefit of vitamin E in patients. It is recommended to work out at which threshold the drug-metabolizing system can be induced in humans before new trials with high dosages of vitamin E are started.  相似文献   

2.
Organic nitrates, such as nitroglycerin (NTG), have been used to relieve the symptoms of angina pectoris. However, their biochemical mechanisms of action, particularly in relation to the development of tolerance, are incompletely defined. It has been reported that supplemental antioxidants such as vitamin E attenuate the development of nitrate tolerance. Therefore, we examined the role of vitamin E in the regulation of nitrate tolerance. Continuous NTG infusion induced nitrate tolerance in rats after 48 h, and vitamin E concentrations decreased in a time-dependent manner in tissues and plasma. Vitamin E supplementation (0.5 g/kg diet) maintained higher concentrations of vitamin E during NTG infusion. The onset and extent of the tolerance, estimated by the decrease in blood pressure following NTG bolus injection during the infusion of NTG, were accentuated in the vitamin E-deficient group. Vitamin E supplementation inhibited nitrate tolerance 48 h after NTG infusion. Cardiac P450 expression (CYP1A2) assessed by immunoblotting, markedly decreased 48 h after NTG administration in control rats. The supplementation of vitamin E significantly attenuated the decrease in P450. Treatment of NTG enhanced vascular superoxide production (L-012 chemiluminescence, DHE fluorescence). The peak of lipid peroxidation and free radical generation in the heart was reached before tolerance developed. In contrast, vitamin E-deficient hearts had lower P450 expression and higher free radical generation than control hearts. To evaluate other vitamin E-inhibitable mechanisms of nitrate tolerance, we studied the NO-cGMP pathway. NTG markedly reduced the vasodilator-stimulated phosphoprotein (VASP) serine 239 phosphorylation (specific substrate of cGMP-activated protein kinase I; cGK-I) in tolerant hearts. Vitamin E inhibited the depletion of pVASP. In conclusion, because continuous NTG infusion causes vitamin E depletion as well as nitrate tolerance, vitamin E deficiency may further accelerate nitrate tolerance via an increase in oxidative stress, the reduced bioconversion because of decreased P450 expression, and impairment of the NO/cGMP pathway in tolerant heart tissues.  相似文献   

3.
Can antioxidant vitamins materially reduce oxidative damage in humans?   总被引:15,自引:0,他引:15  
Endogenous oxidative damage to proteins, lipids, and DNA is thought to be an important etiologic factor in aging and the development of chronic diseases such as cancer, atherosclerosis, and cataract formation. The pathology associated with these diseases is likely to occur only after the production of reactive oxygen species has exceeded the body's or cell's capacity to protect itself and effectively repair oxidative damage. Vitamin C, vitamin E, and beta-carotene, often referred to as "antioxidant vitamins," have been suggested to limit oxidative damage in humans, thereby lowering the risk of certain chronic diseases. However, epidemiological studies and clinical trials examining the efficacy of antioxidant vitamins, either individually or in combination, to affect disease outcome rarely address possible underlying mechanisms. Thus, in these studies it is often assumed that antioxidant vitamins act by lowering oxidative damage, but evidence in support of this contention is not provided. Therefore, in this review, we examine the scientific evidence that supplementation of humans with vitamin C, vitamin E, or beta-carotene lowers in vivo oxidative damage to lipids, proteins, or DNA based on the measurement of oxidative biomarkers, not disease outcome. With the only exception of supplemental vitamin E, and possibly vitamin C, being able to significantly lower lipid oxidative damage in both smokers and nonsmokers, the current evidence is insufficient to conclude that antioxidant vitamin supplementation materially reduces oxidative damage in humans.  相似文献   

4.
Epidemiological and biochemical studies infer that oxidative processes, including the oxidation of low-density lipoprotein (LDL), are involved in atherosclerosis. Vitamin E has been the focus of several large supplemental studies of cardiovascular disease, yet its potential to attenuate or even prevent atherosclerosis has not been realised. The scientific rationale for vitamin E supplements protecting against atherosclerosis is based primarily on the oxidation theory of atherosclerosis, the assumption that vitamin E becomes depleted as disease progresses, and the expectation that vitamin E prevents the oxidation of LDL in vivo and atherogenic events linked to such oxidation. However, it is increasingly clear that the balance between vitamin E and other antioxidants may be crucial for in vivo antioxidant protection, that vitamin E is only minimally oxidised and not deficient in atherosclerotic lesions, and that vitamin E is not effective against two-electron oxidants that are increasingly implicated in both early and later stages of the disease. It also remains unclear as to whether oxidation plays a bystander or a casual role in atherosclerosis. This lack of knowledge may explain the ambivalence of vitamin E and other antioxidant supplementation in atherosclerosis.  相似文献   

5.
Protective effects of supplemental vitamin E against infection.   总被引:6,自引:0,他引:6  
Vitamin E supplementation (dl-alpha-tocopheryl acetate except where noted) in excess of requirement significantly increased humoral immune response or disease resistance. Mice immunized with sheep red blood cells or tetanus toxoid and fed the supplemental vitamin demonstrated increased plaque-forming cells (PFC) and hemagglutinin (HA) titers. A vitamin E deficiency resulted in decreased PFC and little IgG which was partially corrected by N,N-diphenyl-p-phenylenediamine but not as effectively as by vitamin E. Hens immunized with Brucella abortus and fed different levels of the vitamin produced chicks with increased passive immunity; a biphasic antibody response to the level of the vitamin fed was noted. Vitamin E fed to nonimmunized hens was found to significantly increase the primary immune response of their immunized chicks. Feeding dl-alpha-tocopheryl acetate to guinea pigs immunized with Venezuelan equine encephalomyelitis virus resulted in no increased immunity. Injecting this form of the vitamin resulted in severe tissue reaction. However, injecting dl-alpha-tocopheryl significantly improved hemagglutinin inhibition titers. Chicks and turkeys infected with Escherichia coli and fed supplemental vitamin E had reduced mortality and increased HA titers. Sheep fed vitamin E and challenged with Chlamydia had improved weight gains and no detectable Chlamydia.  相似文献   

6.
BACKGROUND: Epidemiological studies show that high intake of food-bound vitamin C and E reduces the risk of gastric cancer. Whether dietary supplementation with antioxidant micronutrients interferes with Helicobacter pylori infection and associated diseases is unclear. The aim of this study was to investigate if dietary vitamin C or E supplementation influences the progression of gastritis, gastric mucosal nitrosative and oxidative protein damage, gastric mucosal lipid peroxidation, or gastric mucosal oxidative DNA damage in H. pylori-infected Mongolian gerbils. MATERIALS AND METHODS: Gerbils were divided into four groups: H. pylori-infected animals fed with vitamin C- or vitamin E-supplemented food, and infected and uninfected animals given standard rodent food. Subgroups of animals were killed at different time-points until 52 weeks postinfection. Concentrations of 3-nitrotyrosine and thiobarbituric acid-reactive substances (TBARS) in the gastric mucosa were determined with an immunodot blot and a fluorometric method, respectively. Mucosal concentrations of carbonyl carbons on proteins and 8-hydroxydeoxyguanosine were determined by enzyme-linked immunosorbent assay. Gastritis was scored semiquantitatively. RESULTS: Vitamin supplements had no effect on the colonization with H. pylori. Vitamin C as well as vitamin E supplements reduced mucosal 3-nitrotyrosine concentrations to normal levels in infected animals. Vitamin E supplements decreased mucosal protein carbonyls and TBARS in short-term gastritis. In addition, vitamin C supplements caused attenuated mucosal oxidative DNA damage and milder mucosal inflammation in short-term gastritis. CONCLUSION: Vitamin C or vitamin E supplementation leads to some short-term protective effects on H. pylori-induced gastritis in Mongolian gerbils. These effects seem to subside over time when the infection persists.  相似文献   

7.
Myocardial ischemia is a disease process characterized by reduced coronary flow such that the supply of nutritive blood to heart muscle (myocardium) is insufficient for normal myocardial aerobic metabolism. Prompt reestablishment of coronary flow by invasive and noninvasive clinical procedures is the most direct and effective means of limiting myocardial damage in ischemic heart disease patients, although reperfusion carries with it an injury component which may reflect, at least to some degree, the toxic effects of partially reduced oxygen species and their participation in degenerative cellular processes such as membrane lipid peroxidation. Vitamin E, a lipophilic, chain-breaking antioxidant, is a prominent membrane constituent in heart muscle, where it modulates/regulates various aspects of heart muscle-cell metabolism and function. Vitamin E's beneficial effects against experimentally induced oxidative damage to the heart, along with inverse epidemiological correlations between plasma vitamin E level and either anginal pain or mortality due to ischemic heart disease, suggest that vitamin E might have protective and therapeutic roles against myocardial ischemic-reperfusion injury. Laboratory investigations aimed at addressing this possibility have demonstrated that vitamin E supplementation protects isolated hearts against ischemic-reperfusion injury, and relatively more inconsistent and limited data document cardioprotective effects of vitamin E in some animal models of myocardial ischemia-reperfusion, especially when administered prior to the ischemic period. Clinical attempts to establish whether vitamin E has therapeutic benefit in ischemic heart disease patients remain inconclusive, having relied upon a variety of nonuniformly controlled protocols and a single, rather subjective endpoint (anginal pain). Consequently, although laboratory data constitute a conceptual context for and indirect support of the idea that vitamin E could be a cardioprotectant against ischemic-reperfusion injury, compelling clinical evidence regarding vitamin E's therapeutic potential in the ischemic heart-disease patient is lacking. Elective coronary revascularization would appear to provide an attractive clinical setting for evaluating the therapeutic efficacy of vitamin E in the context of cardiac ischemia-reperfusion. Further biochemical work would still be required to define how vitamin E exerts any cardioprotective effect observed in these patients.  相似文献   

8.
Various formulations of selenium and vitamin E, both essential human dietary components, have been shown to possess a therapeutic and preventive effect against prostate cancer. Fortuitous results of clinical trials also implied a risk-reduction effect of selenium and vitamin E supplements. The Selenium and Vitamin E Cancer Prevention Trial (SELECT), using oral selenium and vitamin E supplementation in disease-free volunteers, was designed to test a prostate cancer chemoprevention hypothesis. SELECT was terminated early because of both safety concerns and negative data for the formulations and doses given. Here, we review and discuss the studies done before and since the inception of SELECT, as well as the parameters of the trial itself. We believe that there is a lack of appropriate in vivo preclinical studies on selenium and vitamin E despite many promising in vitro studies on these agents. It seems that the most effective doses and formulations of these agents for prostate cancer chemoprevention have yet to be tested. Also, improved understanding of selenium and vitamin E biology may facilitate the discovery of these doses and formulations.  相似文献   

9.
Vitamin E supplementation for the ruminant   总被引:5,自引:0,他引:5  
Vitamin E is essential for such body functions as growth, reproduction, prevention of various diseases, and for integrity of tissues. The most significantly important result of selenium and vitamin E deficiency is tissue degeneration (e.g. white muscle disease). Vitamin E does not cross the placenta in any appreciable amounts; however, it is concentrated in colostrum. Supplemental vitamin E can greatly increase colostral tocopherol. The importance of providing colostrum rich in vitamin E is essential as both calves and lambs are born with low levels of the vitamin. Vitamin E has been shown to increase performance of feedlot cattle and to increase immune response for ruminant health, including being beneficial for mastitis control. Vitamin E given to finishing cattle at higher than National Research Council (NRC) requirements dramatically maintained the red color (oxymyoglobin) compared with the oxidized metmyoglobin of beef. It appears that supplementation of 500 IU vitamin E per head daily for 84–126 days yields tissue -tocopherol that would maintain a favorable level of oxymyoglobin in meat, thus increasing its value. Vitamin E nutritional status is commonly estimated from plasma concentration, with a high correlation between plasma and liver levels of -tocopherol. The NRC estimates for vitamin E requirements of beef cattle, dairy cattle and sheep to range from 15 to 40 mg kg−1; however, higher levels will likely improve performance, and megadose levels will improve carcass quality.  相似文献   

10.
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of -tocopheryl phosphate and of EPC-K1, a composite molecule between -tocopheryl phosphate and l-ascorbic acid, are summarized.  相似文献   

11.
Self-selected supplementation of vitamin E has been associated with reduced coronary events and atherosclerotic progression, but the evidence from clinical trials is controversial. ASAP was a 6-year randomized trial to study the effect of supplementation with vitamin E plus slow-release vitamin C on carotid atherosclerotic progression in 520 hypercholesterolemic men and women aged 45-69 years. The supplementation reduced the progression of carotid atherosclerosis by 26% ( P =0.014), by 33% ( P =0.024) in men and 14% (not significant) in women. The effect was larger in subjects with low baseline vitamin C or atherosclerotic plaques. In the Harvard IVUS trial, the combined supplementation with vitamins E and C significantly inhibited the progression of coronary atherosclerosis in one year. These data confirm that the supplementation with a combination of vitamins E and C can retard atherosclerotic progression. The findings of completed trials testing the effect on cardiovascular events are less consistent. The major on-going clinical trials include the SU.VI.MAX, WHS, WACS and WAVE studies. These involve in total over 80,000 subjects, who are treated with antioxidative supplements for years. The results of these studies will become available during 2003-2006. They may provide the necessary additional information concerning the effect of antioxidants on cardiovascular events.  相似文献   

12.
Self-selected supplementation of vitamin E has been associated with reduced coronary events and atherosclerotic progression, but the evidence from clinical trials is controversial. ASAP was a 6-year randomized trial to study the effect of supplementation with vitamin E plus slow-release vitamin C on carotid atherosclerotic progression in 520 hypercholesterolemic men and women aged 45-69 years. The supplementation reduced the progression of carotid atherosclerosis by 26% ( P =0.014), by 33% ( P =0.024) in men and 14% (not significant) in women. The effect was larger in subjects with low baseline vitamin C or atherosclerotic plaques. In the Harvard IVUS trial, the combined supplementation with vitamins E and C significantly inhibited the progression of coronary atherosclerosis in one year. These data confirm that the supplementation with a combination of vitamins E and C can retard atherosclerotic progression. The findings of completed trials testing the effect on cardiovascular events are less consistent. The major on-going clinical trials include the SU.VI.MAX, WHS, WACS and WAVE studies. These involve in total over 80,000 subjects, who are treated with antioxidative supplements for years. The results of these studies will become available during 2003-2006. They may provide the necessary additional information concerning the effect of antioxidants on cardiovascular events.  相似文献   

13.
Seven trained male cyclists (ate 22.3 +/- 2 years) participated in 4 separate supplementation phases. They ingested 2 capsules per day containing the following treatments: placebo (placebo plus placebo); vitamin C (1 g per day vitamin C plus placebo); vitamin C and E (1 g per day vitamin C plus 200 IU per kg vitamin E); and vitamin E (400 IU per kg vitamin E plus placebo). The treatment order (placebo, vitamin C, vitamin C and E, and vitamin E) was the same for all subjects. Performance trials consisting of a 60-minute steady state ride (SSR) and a 30-minute performance ride (PR) on Cybex 100 Metabolic cycles were performed after each trial. Workloads of 70% of the VO2max were set for the SSR and PR rides, with pedal rate maintained at 90 rpm (SSR) or self determined (PR). Blood samples (5 ml) were drawn pre- and postexercise and analyzed for malonaldehyde (MDA) and lactic acid. The results indicate that vitamin E treatment was more effective than vitamin C alone or vitamin C and E. Pre-exercise plasma levels of MDA in the vitamin E trial was 39% below the pre-exercise MDA levels of the placebo: 2.94 +/- 0.54 and 4.81 +/- 0.65 micromol per ml, respectively. Plasma MDA following exercise in the vitamin E group was also lower than teh placebo: 4.32 +/- 0.37 vs 7.89 +/- 1.0 micromol per ml, respectively. Vitamin C supplementation, on the other hand, elevated both the resting and exercise plasma levels of MDA. None of th supplemental phases had any significant effect on performance. In conclusion, the results indicate that 400 IU/day of vitamin E reduces membrane damage more effectively than vitamin C but does not enhance performance. Athletes are encouraged to include antioxidants, such as vitamin E and C, in their diet to counteract these detrimental effects of exercise. The data presented here suggests that 400 IU/day of vitamin E will provide adequate protection but supplementing the diet with 1 g per day of vitamin C may promote cellular damage. However neither of these vitamins, either alone or in combination, will enhance exercise performance.  相似文献   

14.
A feeding trial was conducted to determine the dietary vitamin E (DL-alpha-tocopheryl acetate, dl-alpha-TOA) requirement and its effect on the non-specific immune responses of juvenile grass shrimp, Penaeus monodon. Purified diets with eight levels (0, 25, 50, 75, 100, 150, 200, 400 mg vitamin E kg diet-1) of supplemental dl-alpha-TOA were fed to P. monodon (mean initial weight 0.29 +/- 0.01 g) for eight weeks. Each diet was fed to three replicate groups of shrimp. Weight gains and total haemocyte count (THC) were higher (P < 0.05) in shrimp fed diets supplemented with 75 and 100 mg vitamin E kg diet-1 than in shrimp fed diets supplemented with 相似文献   

15.
Thyroid hormones are associated with the oxidative and antioxidative status of the organism. Since data on the oxidative status of hypothyroidism are limited and controversial, we investigated the oxidant and antioxidant status and serum paraoxonase/arylesterase activities in propylthiouracil-induced hypothyroidism and examined the effect of vitamin E supplementation on this experimental model. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + vitamin E; group 3, propylthiouracil; group 4, propylthiouracil + vitamin E). Plasma, red blood cell, liver, heart and skeletal muscle malondialdehyde levels were increased in the propylthiouracil-treated group compared with the control rats and were decreased in propylthiouracil + vitamin E group compared with the propylthiouracil-treated group. Vitamin E supplementation also significantly increased liver and kidney reduced glutathione levels in propylthiouracil treated animals. Serum paraoxonase and arylesterase activities were decreased in propylthiouracil treated group and vitamin E supplementation caused significant increase in serum paraoxonase activity compared with the propylthiouracil-treated rats. These findings suggest that hypothyroidism is accompanied with increased oxidative stress and vitamin E supplementation exerts beneficial effects on this situation.  相似文献   

16.
17.
A 90-day feeding study with gerbils was conducted to evaluate the influence of dietary vitamin E levels (25 mg/kg diet, 75 mg/kg, 300 mg/kg, and 900 mg/kg), two levels of dietary methionione (casein or casein+L-methionine (1% w/w)) and two sources of lipid (soybean oil [20%] or soybean oil [4%]+coconut oil [16%, 1:4 w/w]) upon serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol). In addition, this study examined the effects of diet-induced hyperhomocysteinemia and supplemental dietary vitamin E on the oxidation of low density lipoproteins. Tissue vitamin E (heart, liver, and plasma) demonstrated a dose response (P≤0.001) following the supplementation with increasing dietary vitamin E (25, 75, 300, and 900 mg/kg). In addition, tissue vitamin E levels were found to be higher (P≤0.001) in those animals receiving a combination of coconut oil+soybean oil as compared to the group receiving soybean oil solely. Blood cholesterol profiles indicated an increase (P≤0.001) in total cholesterol and LDL cholesterol by the influence of saturated fat and supplemental methionine. Low-density lipoprotein cholesterol profile demonstrated a reduction (P≤0.001) at the higher dietary vitamin E levels (300 and 900 mg/kg) as compared to the 25 mg/kg and 75 mg/kg dietary vitamin E. Plasma protein carbonyls were not influenced by dietary vitamin E nor by supplemental methionine intake. In vitro oxidation of LDL showed that vitamin E delayed the lag time of the oxidation phase (P≤0.001) and reduced total diene production (P≤0.001). On the contrary, supplemental methionine decreased (P≤0.001) the delay time of the lag phase, whereas total diene production was increased (P≤0.001). Plasma lipid hydroperoxides were significantly reduced (P≤0.05) with supplemental dietary vitamin E, whereas supplemental L-methionine (1%) resulted in a significant (P≤0.05) increase in lipid plasma hydroperoxide formation. Plasma homocysteine was elevated (P≤0.001) with supplemental dietary L-methionine (1%) as well as the inclusion of dietary saturated fat. The present data showed that 1) a combination of dietary lipids (saturated and unsaturated fatty acids) as well as vitamin E and methionine supplementation altered blood cholesterol lipoprotein profiles; 2) in vitro oxidation parameters including LDL (lag time and diene production) and plasma hydroperoxide formations were affected by vitamin E and methionine supplementation; and 3) plasma homocysteine concentrations were influenced by supplemental methionine and the inclusion of dietary saturated fat.  相似文献   

18.
19.
Taurine bulls are highly susceptible to heat stress, leading to increased oxidative stress (OS) and impaired sperm viability. Polyunsaturated fatty acids (PUFAs) supplementation can be an alternative to improve semen quality, which also results in more sperm susceptibility to lipid peroxidation. Moreover, this deleterious effect can be exacerbated in animals affected by heat stress. Vitamin E is a key antioxidant that counteracts lipid peroxidation of sperm membrane caused by OS. Thus, combining PUFAs with vitamin E may improve sperm quality. In this context, this study aimed to evaluate the effect of interaction between PUFAs and vitamin E on sperm quality in Bos taurus bulls under testicular heat stress. Sixteen taurine bulls under testicular heat stress were randomly assigned in four groups: Control, Vitamin E, PUFA, and PUFA?+?Vitamin E. All groups lasted for 60 days. Samples were cryopreserved/thawed and analyzed for motility variables (CASA), membrane and acrosome integrity, mitochondrial activity, susceptibility to oxidative stress, DNA integrity, and sperm-binding capacity. Results showed that vitamin E had a beneficial effect on some sperm characteristics, whereas PUFA supplementation had an adverse effect when the two treatments were evaluated separately. Finally, the association between PUFAs and vitamin E did not improve sperm quality.  相似文献   

20.
Vitamin E is a natural antioxidant that has been used in animal and human studies to determine its potential in reducing cardiovascular risk; however, a detailed study in an established obese model of atherosclerosis has yet to be performed. In our current study, we show that obesity and hyperlipidemia cause a synergistic, age-related increase in urinary isoprostane levels in mice deficient in both leptin and low-density lipoprotein receptor (ob/ob;LDLR-/-). Based upon this observation, we hypothesized that vitamin E supplementation would induce potent antiatherogenic effects in this model. Lean and obese LDLR-/- mice were provided vitamin E (2000 IU/kg) in a Western-type high-fat diet for 12 weeks. Plasma lipid parameters, such as total cholesterol (TC), triglyceride (TG) and free fatty acid, were significantly higher in obese mice compared to lean mice at baseline (P<.001). Western-type diet (WD) feeding caused an increase in TC levels in all groups (P<.001); however, TG (P<.001) and free fatty acid (P<.01) were elevated only in lean mice following WD feeding. Vitamin E supplementation neither influenced any of these parameters nor reduced urinary isoprostanes in lean or obese mice. Vitamin E supplementation in ob/ob;LDLR-/- mice resulted in a trend toward a reduction in atherosclerotic lesion area (P=.10), although no differences in lesion area were noted in lean LDLR-/- animals. These data provide evidence that vitamin E supplementation is not sufficient to reduce extreme elevations in systemic oxidative stress due to hyperlipidemia and obesity and, thus, may not be cardioprotective in this setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号