首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to discriminate HTLV-II from HTLV-I, HTLV-II-specific polyclonal antibodies against a synthetic peptide of HTLV-II envelope sequence were raised in rabbits. We immunized two adult rabbits with a KLH-conjugated synthetic peptide corresponding to the amino acid sequence 171-196 of the HTLV-II envelope sequence, which is a specific region for HTLV-II as evaluated with an ELISA method. The resulting rabbit antisera to the synthetic peptide reacted with gp46 of HTLV-II lysates in Western blot analysis but not with that of HTLV-I. Flow cytometric analysis and immunohistochemical study revealed that these affinity purified antisera recognized some HTLV-II-producing cell lines examined, but not HTLV-I-producing cell lines or other cell lines uninfected by HTLV. These findings indicate that these antisera specifically recognized the envelope glycoprotein (gp46) of HTLV-II and suggest the specificity of this region in the immune response to HTLV-II. Such antisera are useful in distinguishing between HTLV-I and HTLV-II infection and in determining the presence of individual HTLV-II-infected cells both in vivo and in vitro, including non-lymphoid cells. They may also assist in the elucidation of the pathogenesis of HTLV-II.  相似文献   

2.
Twelve synthetic peptides containing hydrophilic amino acid sequences of human T-cell lymphotropic virus type I (HTLV-I) envelope glycoprotein were coupled to tetanus toxoid and used to raise epitope-specific antisera in goats and rabbits. Low neutralizing antibody titers (1:10 to 1:20) raised in rabbits to peptides SP-2 (envelope amino acids [aa] 86 to 107), SP-3 (aa 176 to 189), and SP-4A (aa 190 to 209) as well as to combined peptide SP-3/4A (aa 176 to 209) were detected in the vesicular stomatitis virus-HTLV-I pseudotype assay. Higher-titered neutralizing antibody responses to HTLV-I (1:10 to 1:640) were detected with pseudotype and syncytium inhibition assays in four goats immunized with a combined inoculum containing peptides SP-2, SP-3, and SP-4A linked to tetanus toxoid. These neutralizing anti-HTLV-I antibodies were type specific in that they did not inhibit HTLV-II syncytium formation. Neutralizing antibodies in sera from three goats could be absorbed with peptide SP-2 (aa 86 to 107) as well as truncated peptides containing envelope aa 90 to 98, but not with equimolar amounts of peptides lacking envelope aa 90 to 98. To map critical amino acids that contributed to HTLV-I neutralization within aa 88 to 98, peptides in which each amino acid was sequentially replaced by alanine were synthesized. The resulting 11 synthetic peptides with single alanine substitutions were then used to absorb three neutralizing goat antipeptide antisera. Both asparagines at positions 93 and 95 were required for adsorption of neutralizing anti-HTLV-I antibodies from all three sera. Peptide DP-90, containing the homologous region of HTLV-II envelope glycoprotein (aa 82 to 97), elicited antipeptide neutralizing antibodies to HTLV-II in goats that were type specific. In further adsorption experiments, it was determined that amino acid differences between homologous HTLV-I and HTLV-II envelope sequences at HTLV-I aa 95 (N to Q) and 97 (G to L) determined the type specificity of these neutralizing sites. Thus, the amino-terminal regions of HTLV-I and -II gp46 contain homologous, linear, neutralizing determinants that are type specific.  相似文献   

3.
A series of synthetic peptides derived from the corresponding regions of the gag, pol, and env proteins of human T-cell lymphotropic virus types I (HTLV-I) and II (HTLV-II) were used in an enzyme immunoassay to map the immunodominant epitopes of HTLV. Serum specimens from 79 of 87 (91%) HTLV-I-infected patients reacted with the synthetic peptide Gag-1a (amino acids [a.a.] 102 to 117) derived from the C terminus of the p19gag protein of HTLV-I. Minimal cross-reactivity (11%) was observed with serum specimens from HTLV-II-infected patients. Peptide Pol-3, encoded by the pol region of HTLV-I (a.a. 487 to 502), reacted with serum specimens from both HTLV-I- and HTLV-II-infected patients (94 and 86%, respectively). The antibody levels to Pol-3 were significantly higher (P less than 0.01) in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis than in either adult T-cell leukemia patients or HTLV-I-positive asymptomatic carriers. None of the other peptides studied demonstrated significant binding to serum specimens obtained from HTLV-I- or HTLV-II-infected individuals. While Gag-1a did not react with serum specimens from normal controls, Pol-3 demonstrated some reaction with specimens from seronegative individuals (11.4%). The antibodies to Gag-1a and Pol-3 in serum specimens from HTLV-I-infected patients could be specifically inhibited by the corresponding synthetic peptides and by a crude HTLV-I antigen preparation, indicating that these peptides mimic native epitopes present in HTLV-I proteins that are recognized by serum antibodies from HTLV-I- and -II-infected individuals.  相似文献   

4.
Antigenic sites on human T cell leukemia virus type I (HTLV-I) gp46 and gp21 envelope glycoproteins that are immunogenic in man were studied with envelope gene (env)-encoded synthetic peptides and a mAb to HTLV-I gp46 envelope glycoprotein. Antibodies in 78% of sera from HTLV-I seropositive subjects reacted with synthetic peptide 4A (amino acids 190 to 209) from a central region of HTLV-I gp46. Human anti-HTLV-I antibodies also bound to synthetic peptides 6 (29% of sera) and 7 (18% of sera) from a C-terminal region of gp46 (amino acids 296 to 312) and an N-terminal region of gp21 (amino acids 374 to 392), respectively. mAb 1C11 raised to affinity-purified HTLV-I gp46 reacted with gp46 external envelope glycoprotein and gp63 envelope precursor in immunoblot assay and also bound to the surface of HTLV-I+ cells lines HUT-102 and MT-2. Antibody 1C11 did not react with HTLV-II or HIV-infected cells or with a broad panel of normal human tissues or cell lines. In competitive RIA, anti-gp46 antibody 1C11 was inhibited from binding to gp46 either by antibodies from HTLV-I seropositive subjects or by HTLV-I env-encoded synthetic peptide 4A, indicating that 1C11 bound to or near a site on gp46 within amino acids 190 to 209 also recognized by antibodies from HTLV-I-seropositive individuals. When tested in syncytium inhibition assay, mAb 1C11 did not neutralize the infectivity of HTLV-I. Thus, HTLV-I infection in man is associated with a major antibody response to a region of gp46 within amino acids 190 to 209 that is on the surface of virus-infected cells.  相似文献   

5.
Highly sensitive coculture methods were developed both for isolation of human T-lymphotropic virus types I and II (HTLV-1 and HTLV-II) from infected individuals and for productive infection of lymphoid cells. Mitogen-activated peripheral blood mononuclear cells (PBMC) from 13 HTLV-I- and 20 HTLV-II-positive specimens were cocultured with an equal number of mitogen-activated PBMC from HTLV-seronegative individuals, and culture supernatants were tested for the presence of soluble p24gag antigens at weekly intervals for 4 weeks. Eleven of 13 (85%) HTLV-I and 14 of 20 (70%) HTLV-II cultures were positive for p24 antigens. None of the 17 HTLV-seroindeterminate or six HTLV-seronegative specimens were positive for the presence of p24 antigen. The isolation rates for HTLV-I and HTLV-II by an alternative whole-blood lysis procedure were comparable to those obtained by standard PBMC cultures. Furthermore, cocultivation of PHA-stimulated PBMC from healthy donors with lethally irradiated HTLV-I- and HTLV-II-infected cell lines (SP and Mo-T, respectively) resulted in productive viral infection, as reflected by the appearance of p24gag antigens concomitant with specific genomic amplification of HTLV proviral DNA after 3 weeks of cocultivation. Thus, the cocultivation technique provides a highly sensitive and specific procedure both for HTLV isolation and for infection of target cells.  相似文献   

6.
Heat shock cognate protein 70 (HSC70) has been shown to bind to the peptide corresponding to amino acids 197 to 216 of human T-cell lymphotropic virus type I (HTLV-I) envelope protein, gp46, and an anti-HSC70 monoclonal antibody (mAb) inhibits HTLV-I-induced syncytium formation. These findings suggest that HSC70 is necessary for the entry of HTLV-I into its target cells. Here we showed that HSC70 directly binds to gp46 by co-immunoprecipitation of HSC70 and gp46 from HTLV-I-producing human T-cell lysate. However, transduction of human HSC70 cDNA into BaF3 cells, which were found to be highly resistant to HTLV-I infection, did not support the HTLV-I entry, and HSC70 expressed in NIH3T3 cells, which were found to be almost resistant to syncytium formation upon cocultivation with HTLV-I-producing cells but sensitive to infection with cell-free HTLV-I, enhanced cell fusion induced by HTLV-I-producing cells, but did not enhance the entry of cell-free HTLV-I into these cells. The mAb against HSC70 inhibited syncytium formation in NIH3T3 cells expressing HSC70, but showed little effect on infection of these cells with cell-free HTLV-I. These findings indicate that HSC70 markedly enhances syncytium formation induced by HTLV-I but does not facilitate HTLV-I entry into target cells.  相似文献   

7.
Two different approaches were used to map the type-specific regions on human T cell leukemia virus (HTLV) envelope glycoproteins. 1) Antibody reactivities of polymerase chain reaction-confirmed HTLV-I or HTLV-II carriers' sera were analyzed by Western blot assay with seven recombinant proteins containing different regions of HTLV-I or HTLV-II envelope proteins. 2) Rabbit antibodies elicited by nine HTLV-I Env synthetic peptides were used to react with the native HTLV envelope glycoproteins in an antibody-dependent cellular cytotoxicity (ADCC) assay. The results of the Western blot analysis showed that RP-B2, which contains amino acid residues 166 to 213 from HTLV-II exterior glycoprotein, was specifically reactive with 90.6% (48 of 53) of the HTLV-II carriers' sera but not with any of the HTLV-I carriers' serum (0 of 71). In contrast, RP-B, which contains amino acid residues 166 to 229 from HTLV-I exterior glycoprotein, was reactive with 85.1% (114 of 134) of the HTLV-I carriers' sera but not with any HTLV-II carrier serum (0 of 62). Furthermore, anti-HTLV-I Env synthetic peptide antibody-mediated ADCC identified several distinguishing HTLV-I ADCC epitopes in the middle region (amino acid residues 177 to 257) of the HTLV-I exterior glycoprotein. Therefore, HTLV type-specific epitopes reside mainly in a 69-amino acid sequence bounded by two cysteine residues (amino acids 157 and 225 for HTLV-I and 153 and 221 for HTLV-II), in the middle region of the exterior envelope glycoproteins.  相似文献   

8.
P Lusso  F Lori    R C Gallo 《Journal of virology》1990,64(12):6341-6344
Although human immunodeficiency virus (HIV) is the causative agent of the acquired immunodeficiency syndrome and related disorders, it has been suggested that viral cofactors may accelerate the progression of the disease. We present evidence that human T lymphoid cells productively coinfected by HIV type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) or HTLV-II generate a progeny of phenotypically mixed viral particles that allow the penetration of HIV-1 into previously nonsusceptible CD4- human cells, including mature CD8+ T lymphocytes, B lymphoid cells, epithelial cells, and skeletal muscle cells. The infection is independent of the major HIV-1 receptor, (i.e., the CD4 glycoprotein) since OKT4a, a neutralizing anti-CD4 monoclonal antibody, fails to block the penetration of HIV-1. Similarly, infection is not inhibited by monoclonal antibody M77, directed toward the neutralizing loop of the gp120 envelope glycoprotein of HIV-1. In contrast, pretreatment of the virus stock with HTLV-I-neutralizing human serum completely abolishes the penetration of phenotypically mixed HIV-1 into CD4- cells. These results suggest that HTLV-I or HTLV-II may increase the pathogenicity of HIV-1 by broadening the spectrum of its cellular tropism and, thus, favoring its spread within the organism of coinfected hosts.  相似文献   

9.
This study aimed at implementing a Nested-polymerase chain reaction (Nested-PCR) for the molecular diagnosis of human T-cell lymphotropic virus type I/II (HTLV-I and HTLV-II) infections in peripheral blood mononuclear cells of infected subjects in Argentina. The sensitivity and specificity of the assay for the detection of regional strains were assessed by comparing them with the molecular assay of reference PCR-hybridization. The Nested-PCR detected 1 MT-2 cell (> or = 8 proviral copies)/1x10(6) non-infected cells showing high sensitivity for provirus detection. While both molecular assays showed high specificity (100%) for HTLV-I and HTLV-II detection, the sensitivity values differed: 100% for Nested-PCR and 67% for PCR-hybridization assay. Moreover, this technique showed less sensitivity for the detection of DNA sequences of HTLV-II (33%) than for the detection of DNA sequences of HTLV-I (75%). The high sensitivity and specificity of the Nested-PCR for regional strains and its low costs indicate that this assay could replace the PCR-hybridization assay for the molecular diagnosis of HTLV-I/II infections. It will be interesting to assess the usefulness of this assay as a tool for the molecular diagnosis of HTLV-I/II infections in other developing countries. Other studies that include a greater number of samples should be conducted.  相似文献   

10.
Human T-cell leukemia (or lymphotropic) virus type II (HTLV-II) was isolated from eight HTLV-seropositive patients, six of whom were also infected with human immunodeficiency virus, by cocultivation of peripheral blood mononuclear cells (PBMCs) with BJAB, a continuous B-cell line. Restriction endonuclease mapping of the proviruses demonstrated consistent differences among isolates, and two distinct physical map patterns were observed. The results suggest the existence of two closely related molecular subtypes of HTLV-II, which are tentatively designated HTLV-IIa and HTLV-IIb. This finding was supported by preliminary nucleotide sequence analysis of the env gene region encoding the transmembrane glycoprotein gp21, which showed consistent differences between the two proposed virus subtypes. Exploitation of differences in restriction endonuclease sites allowed polymerase chain reaction amplification to detect and differentiate the two subtypes in fresh PBMCs of HTLV-seropositive intravenous drug abusers (IVDAs). The results of these studies confirm that HTLV-II infection is the prominent HTLV infection in seropositive IVDAs and also show that infection with both subtypes occurs. The finding of genetic heterogeneity in the HTLV-II group of viruses may have important implications for studies on its role in human disease and will be useful in characterizing the viruses present in newly discovered endemic foci in New World indigenous populations.  相似文献   

11.
DNA from the peripheral blood mononuclear cells of 17 different individuals infected with human T-cell lymphoma/leukemia virus type II (HTLV-II) was successfully amplified by the polymerase chain reaction (PCR) with the primer pair SK110/SK111. This primer pair is conserved among the pol genes of all primate T-cell lymphoma viruses (PTLV) and flanks a 140-bp fragment of DNA which, when used in comparative analyses, reflects the relative degree of diversity among PTLV genomes. Cloning, sequencing, and phylogenetic comparisons of these amplified 140-bp pol fragments indicated that there are at least two distinct genetic substrains of HTLV-II in the Western Hemisphere. These data were confirmed for selected isolates by performing PCR, cloning, and sequencing with to 10 additional primer pair-probe sets specific for different regions throughout the PTLV genome. HTLV-II isolates from Seminole, Guaymi, and Tobas Indians belong in the new substrain of HTLV-II, while the prototype MoT isolate defines the original substrain. There was greater diversity among HTLV-II New World strains than among HTLV-I New World strains. In fact, the heterogeneity among HTLV-II strains from the Western Hemisphere was similar to that observed in HTLV-I and simian T-cell lymphoma/leukemia virus type I isolates from around the world, including Japan, Africa, and Papua New Guinea. Given these geographic and anthropological considerations and assuming similar mutation rates and selective forces among the PTLV, these data suggest either that HTLV-II has existed for a long time in the indigenous Amerindian population or that HTLV-II isolates introduced into the New World were more heterogeneous than the HTLV-I strains introduced into the New World.  相似文献   

12.
Human immunodeficiency virus type-1 (HIV-1) and human T-cell leukemia virus type-I (HTLV-I) have a similar tropism for target cell types, especially for CD4+ T cells. In this study, we provide evidence that receptors of these two viruses exist independently on the target cell. We established an HTLV-I-producing CD8+ T cell line (ILT-8M2) with a remarkable cell fusion capacity. When cocultured with MOLT-4 cells, ILT-8M2 cells induced giant syncytia more efficiently than any other tested HTLV-I-producer cell lines. In contrast to other HTLV-I-producers, ILT-8M2 cells were minimally susceptible to cytopathic effects of HIV-1 due to very low expression of CD4, although they were able to be persistently infected by HIV-1. The indicator MOLT-4 cells are known to respond well to HIV-1-induced cell fusion, but they lose this ability if they become persistently infected with HIV-1 because of the reduction of CD4 receptor expression. ILT-8M2 was, however, still capable of inducing syncytia with the MOLT-4 cells persistently infected by HIV-1 (MOLT-4/IIIB). This syncytium formation was dependent on the HTLV-I-envelope, as it was inhibited by HTLV-I-positive human sera or a monoclonal antibody to HTLV-I gp46 but not by monoclonal antibodies to HIV-1 gp120 or CD4. Moreover, ILT-8M2 cells persistently infected by HIV-1 (ILT-8M2/IIIB) induced both HTLV-I- and HIV-1-mediated syncytia with uninfected MOLT-4 cells. These results suggest that HTLV-I induces cell fusion utilizing receptors on the target cells independent of HIV-1-receptors.  相似文献   

13.
The human T-cell leukemia viruses type I (HTLV-I) and type II (HTLV-II) have been implicated in the pathogenesis of a variety of neoplastic and neurological disorders. Classical techniques for detection involve assay of serum for antibodies by Western blotting or ELISA, which do not discriminate between infection with HTLV-I and HTLV-II. In order to provide appropriate prognostic information to infected individuals and to obtain an accurate assessment of the prevalence of both retroviruses in the United States, we and others have applied the technique of enzymatic DNA amplification to detect HTLV-I and HTLV-II. These techniques allow rapid detection of viral nucleic acids in freshly isolated peripheral blood samples. Recent studies indicate an unusually high rate of HTLV-II infection among seropositive individuals in a sampling of New Orleans intravenous drug users, indicating a need for combined serological and molecular genetic screening of high-risk populations.  相似文献   

14.
Rapid assays which measure the ability of mutant human immunodeficiency virus type 1 envelope glycoproteins to mediate cell-free and/or cell-to-cell transmission of virus are described. By using these assays, envelope glycoprotein mutants with varying degrees of syncytium-forming ability were tested for ability to complement viral replication in trans. As expected, mutants that dramatically affect association of the gp120-gp41 envelope subunits, CD4 binding, or membrane fusion were unable to form syncytia or to support cell-free or cell-to-cell transmission. Surprisingly, some membrane fusion-defective mutants significantly attenuated in syncytium-forming ability were able to complement viral replication. Conversely, mutations in the carboxyl terminus of gp41 transmembrane glycoprotein, although not affecting syncytium-forming ability, significantly attenuated both forms of virus transmission. These results indicate that syncytium formation is not sufficient for cell-to-cell transmission of human immunodeficiency virus type 1. Furthermore, virus transmission appears to be less sensitive to inhibition of membrane fusion than is syncytium formation.  相似文献   

15.
16.
17.
Several epidemiologic and clinical studies suggest that patients coinfected with human immunodeficiency virus (HIV), the primary etiologic agent in AIDS, and other viruses, such as cytomegalovirus or human T-cell leukemia virus (HTLV), have a more severe clinical course than those infected with HIV alone. Cells infected with two viruses can, in some cases, give rise to phenotypically mixed virions with altered or broadened cell tropism and could therefore account for some of these findings. Such pseudotypes could alter the course of disease by infecting more tissues than are normally infected by HIV. We show here that HIV type 1 (HIV-1) efficiently incorporates the HTLV type I (HTLV-I) envelope glycoprotein and that both HIV-1 and HTLV-II accept other widely divergent envelope glycoproteins to form infectious pseudotype viruses whose cellular tropisms and relative abilities to be transmitted by cell-free virions or by cell contact are determined by the heterologous envelope. We also show that the mechanism by which virions incorporate heterologous envelope glycoproteins is independent of the presence of the homologous glycoprotein or heterologous gag proteins. These results may have important implications for the mechanism of HIV pathogenesis.  相似文献   

18.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号