首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

2.
Twenty Trichoderma isolates were collected on 13 Serbian Agaricus bisporus farms and one in Bosnia and Herzegovina during 2006–2010. Twelve isolates were classified into five species by standard mycological studies and ITS1/ITS4 sequence analyses, namely Trichoderma atroviride, Trichoderma koningii, Trichoderma virens, Trichoderma aggressivum f. europaeum and Trichoderma harzianum. Eight isolates were not identified to the species level but were shown to be related to T. harzianum. The isolates of T. harzianum exhibited the highest virulence to the harvested A. bisporus pilei and T. virens and T. aggressivum f. europaeum the lowest. Antifungal activity of two biofungicides based on Bacillus subtilis and tea tree oil and the fungicide prochloraz manganese were tested in vitro to all Trichoderma isolates. Prochloraz manganese and B. subtilis were highly toxic to all tested Trichoderma isolates, their ED50 values were below 0.3 and 1.3 mg L?1, respectively. Tea tree oil did not exhibit a significant antifungal activity (ED50 = 11.9–370.8 mg L?1). The effectiveness of biofungicides was evaluated against T. harzianum in a mushroom growing room, and they were applied alone or in combination with the fungicide at a respective proportion of 20:80%. Prochloraz manganese showed higher effectiveness than both tested biofungicides or their respective mixtures. The biofungicide based on B. subtilis demonstrated greater effectiveness in preventing disease symptoms than tea tree oil. B. subtilis combined with the fungicide revealed less antagonism in effectiveness against pathogen than tea tree oil.  相似文献   

3.
Trichoderma species are collected from different location of sugarbeet growing areas of Tamil Nadu and it is effective against Sclerotium rolfsii pathogen caused by sugarbeet ecosystems. Out of thirty-one isolates of Trichoderma viride and four isolates of Trichoderma harzianum collected and tested for their antagonistic activity against S. rolfsii by dual culture technique, one isolate was found to be effective T. viride (TVB1) that recorded the maximum (73.03%) inhibition on the mycelial growth recording only 2.40 cm growth as against 8.90 cm in the control. The isolates of T. harzianum THB-1 recorded 71.19% mycelial growth reduction over control. The colonisation behaviour of T. viride (TVB1) revealed that it completely over grew on pathogen within 48 h after interaction with the pathogen, and speed of growth on pathogen was also high and it possesses a higher level of competitive saprophytic ability. The best four isolates of TVB1, TVB-2, TVB-3 and TVB31 and two isolates of T. harzianum THB-1 and THB-2 were compared with other species of Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma koningii and Chaetomium globosum and tested under in vitro condition. BA of neem cake at 150 kg ha?1 + T. viride isolate (TVB1) at 2.5 kg/ha recorded least root rot disease incidence of 17.05% which accounted for 75.37% disease reduction over control and highest recorded maximum root yield 65.73 t ha?1 and increasing sugar content.  相似文献   

4.
To assess the impact of non-host crops intercropping, bioagents and oil cakes, on population dynamics of Fusarium oxysporum f. sp. psidii (Fop) and wilt of guava. Lowest population of Fop was recorded in garlic followed by intercropping with marigold with reduction of 84.9 and 83.9%, respectively. Bioagents viz; Aspergillus niger, Trichoderma viride and Trichoderma harzianum reduced the Fop population significantly, with the lowest in T. harzianum followed by A. niger. Garlic bulb extract exhibited maximum inhibition of Fop growth (2.7 cm) followed by marigold (2.4 cm), respectively, over control. Neem cake significantly reduced population of Fop, closely followed by mahua cake, over control. Integration of neem cake + T. harzianum + garlic reduced the Fop population significantly, over control, followed by neem cake + T. harzianum + marigold but neem cake + T. harzianum + marigold reduced wilt disease significantly in comparison to neem cake + T. harzianum + garlic inter-cropping.  相似文献   

5.
Rhizoctonia damping-off caused by Rhizoctonia solani Kühn, is one of the most damaging sugar beet diseases. It causes serious economic damage wherever sugar beets are grown. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Suppression of damping-off disease caused by R. solani was carried out by four isolates of Bacillus subtilis (Ehrenberg) Cohn as well as three isolates of each of Trichoderma harzianum Rifai and Trichoderma hamatum (Bonord.) Bainier. The effect of Bacillus and Trichoderma isolates against R. solani was investigated in vitro and tested on sugar beet plants under greenhouse conditions. Isolates of Bacillus and Trichoderma were able to inhibit the growth of R. solani in dual culture. Furthermore, Trichoderma isolates gave high antagonistic effect than isolates of B. subtilis. Under greenhouse conditions, coating seeds by T. harzianum and B. subtilis separately, reduced seedling damping-off significantly. However, applications of T. harzianum increased the percentage of surviving plants more than B. subtilis in comparison to control. The obtained results indicate that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in sugar beet damping-off and should be harnessed for further biocontrol applications.  相似文献   

6.
The optimal conditions necessary for a large yield and a high frequency of regeneration of protoplasts isolated from the biocontrol agentsTrichoderma koningii andT. harzianum were investigated. Protoplast yields were 1.2×108/ml fromT. koningii and 6×107/ml fromT. harzianum when 20-h mycelial culture was treated with a lytic enzyme solution containing Novozym 234 (15 mg/ml), sucrose (0.6 M) and citrate phosphate buffer (0.02 M), pH 5.6 at 31°C. When the protoplasts were grown in the regeneration medium containing yeast extract (1.5%), 1 I of Mandel's salts, pH 5.6, and glucose (0.8 M), a high frequency of regeneration of the protoplast was obseved: 66% forT. koningii and 45% forT. harzianum. Two patterns of regeneration were observed. First, the hyphae arose directly from the regenerated protoplast mother cell. Second, a chain of bud cells developed from the protoplast and subsequently generating hyphae generally protruded from the terminal bud cells.  相似文献   

7.
The ability for rhizobacteria and fungus to act as bioprotectants via induced systemic resistance has been demonstrated, and considerable progress has been made in elucidating the mechanisms of plant–biocontrol agent–pathogen interactions. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 from rhizospheric soils were used singly and in consortium and assessed on the basis of their ability to provide disease protection by relating changes in ascorbic acid and hydrogen peroxide (H2O2) production, lipid peroxidation, and antioxidant enzymes in pea under the challenge of Sclerotinia sclerotiorum. Increased production of H2O2 24 h after pathogen challenge was observed and was 254.4 and 231.7–287.7 % higher in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. A similar increase in ascorbic acid content and ascorbate peroxidase activity was observed 24 and 48 h after pathogen challenge, respectively, whereas increased activities of catalase, guaiacol peroxidase, and glutathione peroxidase were observed 72 h after pathogen challenge. Similarly, lipid peroxidation reached a maximum at 72 h of pathogen challenge and was 61.2 and 11.2–32.1 % less in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. These findings suggest that the interaction of microorganisms in the rhizosphere enhanced protection from oxidative stress generated by pathogen attack through induction of antioxidant enzymes and improved reactive oxygen species management.  相似文献   

8.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study the SOD gene was successfully transferred into the bio-control fungus Trichoderma harzianum with an efficiency of 60–110 transformants per 107 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot. Antifungal activities of the transformants were examined under abiotic stresses. The transformants were exposed to 40°C for three days and 2 mol/l NaCl at 27°C for 5–10 days to assay antifungal activities with Sclerotinia sclerotiorum. The inhibition rates of the transformants, comparing to Trichoderma harzianum with no SOD gene transferred, were respectively 83.96% after 40°C and 60.13% after 2 mol/l NaCl. The results showed that the SOD transformants had significantly higher resistance to heat and salt stress.  相似文献   

9.
Yeoh  H. H.  Tan  T. K.  Tian  K. E. 《Mycopathologia》1984,87(1-2):51-55
Species of Cunninghamella, Gliocladium deliquescens, Trichoderma harzianum and T. koningii were isolated from rotten wood chips. When grown on medium containing cellulose, all except Cunninghamella produced the three primary enzymes (exoglucanase, endoglucanase and -glucosidase) of the cellulase complex. The patterns for enzyme production, changes in mycelial mass and pH of the induction medium for T. harzianum and T. koningii were closely similar, and were distinguishable from those of G. deliquescens.  相似文献   

10.
We aimed to establish an efficient RNA interference (RNAi) system in the industrially important filamentous fungus Trichoderma koningii using the DsRed protein as a reporter of the silencing process. To accomplish this, a DsRed expression cassette was transformed into T. koningii, and a recombinant strain that stably expressed DsRed was obtained. Next, a vector-directing expression of a DsRed hairpin RNA was constructed and transformed into the T. koningii recipient strain. Approximately 79 % of transformants displayed a decrease in DsRed fluorescence, and expression of DsRed in some transformants appeared to be fully suppressed. Characterization of randomly selected transformants by genomic DNA PCR analysis, real-time PCR quantification, and western blot confirmed downregulation of gene expression at different levels. The RNA silencing approach described here for T. koningii is effective, and the DsRed reporter gene provides a convenient tool for identification of silenced fungal transformants by their DsRed fluorescence compared to the control strain. The results of this study demonstrate the power of RNAi in T. koningii, which supports the use of this technology for strain development programs and functional genomics studies in industrial fungal strains.  相似文献   

11.
Abstract

Three antagonists: Pseudomonas fluorescens (Pf1), Bacillus subtilis and Trichoderma viride, were tested alone and in combination for suppression of onion leaf blight (Alternaria palandui) disease under glasshouse and field conditions. The average mean of disease reduction was 24.81% for single strains and 42.44% for mixtures. In addition to disease suppression, treatment with a mixture of antagonists promoted plant growth in terms of increased plant height and ultimately bulb yield. Though seed treatment of either single strain or strain mixtures alone could reduce the disease, subsequent application to root, leaves or soil further reduced the disease and enhanced the plant growth. The mixture consisting of Pseudomonas fluorescens Pf1 plus Bacillus subtilis plus Trichoderma viride was the most effective in reducing the disease and in promoting plant growth and bulb yield in greenhouse and field tests.  相似文献   

12.
The most common biological control agents (BCAs) of the genus Trichoderma have been reported to be strains of Trichoderma virens, T. harzianum, and T. viride. Since Trichoderma BCAs use different mechanisms of biocontrol, it is very important to explore the synergistic effects expressed by different genotypes for their practical use in agriculture. Characterization of 16 biocontrol strains, previously identified as “Trichoderma harzianum” Rifai and one biocontrol strain recognized as T. viride, was carried out using several molecular techniques. A certain degree of polymorphism was detected in hybridizations using a probe of mitochondrial DNA. Sequencing of internal transcribed spacers 1 and 2 (ITS1 and ITS2) revealed three different ITS lengths and four different sequence types. Phylogenetic analysis based on ITS1 sequences, including type strains of different species, clustered the 17 biocontrol strains into four groups: T. harzianum-T. inhamatum complex, T. longibrachiatum, T. asperellum, and T. atroviride-T. koningii complex. ITS2 sequences were also useful for locating the biocontrol strains in T. atroviride within the complex T. atroviride-T. koningii. None of the biocontrol strains studied corresponded to biotypes Th2 or Th4 of T. harzianum, which cause mushroom green mold. Correlation between different genotypes and potential biocontrol activity was studied under dual culturing of 17 BCAs in the presence of the phytopathogenic fungi Phoma betae, Rosellinia necatrix, Botrytis cinerea, and Fusarium oxysporum f. sp. dianthi in three different media.  相似文献   

13.
This study evaluated the ability of the microorganisms Rhizopus oryzae (CCT7560) and Trichoderma reesei (QM9414), producers of generally recognized as safe (GRAS) enzymes, to reduce the level of aflatoxins B1, B2, G1, G2, and M1. The variables considered to the screening were the initial number of spores in the inoculum and the culture time. The culture was conducted in contaminated 4 % potato dextrose agar (PDA) medium, and the residual mycotoxins were determined every 24 h by HPLC-FL. The fungus R. oryzae has reduced aflatoxins B1, B2, and G1 in the 96 h and aflatoxins M1 and G2 in the range of 120 h of culture by approximately 100 %. The fungus T. reesei has reduced aflatoxins B1, B2, and M1 in the 96 h and aflatoxin G1 in the range of 120 h of culture by approximately 100 %. The highest reduction occurred in the middle of R. oryzae culture.  相似文献   

14.
A Surface Response Model was used to study the effect of pH, temperature and agitation on growth, sporulation and production of antifungal metabolites by Bacillus subtilis CCMI 355.Strong agitation, temperature between 27 and 34 °C and pH 6 favoured cell growth. Alkaline pH, strong agitation and temperature between 28 and 34 °C favoured spore formation. No relationship was found between sporulation and the production of antifungal metabolites. According to the model, pH 8, 37 °C and the absence of agitation were the optimal conditions for the production of broad-spectrum antifungal metabolites against Botrytis cinerea, Penicillium expansum, Trichoderma sp, Trichoderma harzianum, Trichoderma koningii and Trichoderma virgatum.In situ assays using green wood impregnated with Bacillus subtilis CCMI 355 inoculated in Yeast Extract Glucose Broth medium in the conditions above, displayed an efficient protection against wood surface contaminant fungi.  相似文献   

15.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

16.
Abstract

Biological and nutrient management of soil borne disease is increasingly gaining stature as a possible practical and safe approach. Inhibitory effects of fungal and bacterial antagonists were tested under in vitro conditions against the wilt pathogen of alfalfa Fusarium oxysporum f. sp. medicaginis. Trichoderma harzianum and Pseudomonas fluorescens (PI 5) were found to be effective against the alfalfa wilt pathogen. Manganese sulphate at 500 and 750 ppm inhibited the mycelial growth of F. oxysporumf. sp. medicaginis under in vitro conditions. In pot culture studies, manganese sulphate at 12.5 mg/kg reduced the wilt incidence (23.33%). Combined application of manganese sulphate 12.5 mg/kg + T. harzianum 1.25 mg/kg of soil significantly reduced the wilt incidence accompanied by improved plant growth and yield in pot culture. The mixture of manganese sulphate (25 kg/ha) + T. harzianum (2.5 kg/ha) significantly reduced the wilt incidence when applied as a basal dose in the field conditions. The average mean of disease reduction was 62.42% over control.  相似文献   

17.
Nine isolates of Trichoderma were collected from Assiut Governorate, Egypt, as leaf surface and endophytic fungi associated with onion flora stalks. Four isolates were identified as Trichoderma harzianum, while five isolates were belonging to Trichoderma longibrachiatum. The antagonistic activity of these isolates against onion purple blotch pathogen Alternaria porri was studied in vitro using dual culture assay. All tested Trichoderma isolates showed mycoparasitic activity and competitive capability against the mycelial growth of A. porri. Mycoparastic activity of Trichoderma was manifested morphologically by the overgrowth upon the mycelial growth of the pathogen and microscopically by production of coiling hyphae around pathogen hyphae. Isolates of Tharzianum exhibited high ability to compete on potato dextrose agar (PDA) medium causing the maximum rate of pathogen inhibition (73.12%), while isolates of T. longibrachiatum showed inhibition rate equalling 70.3%. Chitinase activity of Trichoderma was assayed, and T. harzianum Th‐3013 showed the maximum value contributing 2.69 U/min. Application of T. harzianum Th‐3013 to control purple blotch disease in vivo under greenhouse conditions caused disease reduction up to 52.3 and 79.9% before and after 48 h of pathogen inoculation, respectively, while the fungicide Ridomil Gold Plus caused disease reduction comprising 56.5 and 71.7%, respectively. This study proved that T. harzianum Th‐3013 as a biocontrol agent showed significant reduction in onion purple blotch disease compared with the tested fungicide.  相似文献   

18.
Fusarial wilt of tomato (Lycopersicon esculentum Mill.) is a very common and severe disease occurring in most of the vegetable fields in West Bengal, India. Potenciation and formulation of different fungicidal chemicals and phytoextracts were evaluated against the growth of the pathogen wherein carbendazim (bavistin) and leaf extracts of Azadirachta indica (neem) were recorded to be most effective. Combined treatment with 4 ml neem leaf extract and 1 ml captan (0.01%) or with 4 ml garlic bulb extract and 1 ml captan (0.01%) exhibited 100% growth inhibition of the pathogen. Integrated control of the pathogen with phytoextracts, fungicide and biocontrol agents was carried out. Among the treatments, a combination with extracts of neem, captan (0.01%) and metabolites of Trichoderma harzianum was proved to be superior over the other. Field experiment with three fungicides at 0.5% concentration was carried out in randomised block design where application of bavistin showed up to 62.27% reduction of wilt infection in tomato plants. Soil solarisation of tomato field showed 62.50 and 66.69% reduction of infection during the trial years. However, integration of soil solarisation with the applications of T. harzianum, captan (0.01%) and neem resulted in 100% reduction of infection and thus it was recorded as the most effective treatment in reducing the incidence of the disease.  相似文献   

19.
Antagonism tests on agar-plates and glasshouse screening indicated that three isolates of Trichoderma harzianum varied in their ability to antagonize the take-all fungus (Gaeumannomyces graminis var. tritici). Isolate 71 which was the most effective in suppressing take-all of wheat, produced two pyrones and other undetermined analogues. Isolates of T. koningii and T. hamatum shown to suppress take-all, produced a simple pyrone compound. Although T. harzianum isolates 70 and 73 did not produce any pyrones, they reduced the disease albeit to a much lesser extent than isolate 71; with isolate 73 showing distinct host growth promotion effects. It is proposed that the success of isolate 71 of T. harzianum was related to the pyrones it produces and that the ability of isolates 70 and 73 to reduce take-all may be related to mechanisms other than those involving antibiotics.  相似文献   

20.
Fusarium wilt is caused by F. oxysporum Schlecht end. Fr. f. sp. ciceris (FOC) is a devastating disease of chickpea in Algeria. In this study, antagonistic effects of B. subtilis MF352017 (Bs1) and Trichoderma harzianum KX523899 (T5) isolated from the rhizosphere of chickpea were investigated separately and in combination for their efficacy in controlling the disease in vivo. The efficacy of the antagonistic biocontrol agents on Fusarium wilt was evaluated based on vegetative and root growth parameters of chickpea. Seed bacterisation with B. subtilis MF352017 (Bs1) and seed treatment with T. harzianum (T5) significantly protected chickpea seedlings from FOC as compared to untreated plants. Plant protection was more pronounced in T. harzianum-treated plants than in bacterised plants. The application of both antagonists effectively suppressed 93.67% of the disease and also enhanced plant growth leading to increased plant height, root length, fresh and dry weights of shoot and root. The mixture of antagonists increased the effectiveness of B. subtilis MF352017 (Bs1) isolate on Fusarium wilt and improved chickpea growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号