首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was aimed at the development of economical methods for higher yields of biosurfactant by suggesting the use of low-cost raw materials. Two oil-degrading strains, Pseudomonas aeruginosa GS9-119 and DS10-129, were used to optimize a substrate for maximum rhamnolipid production. Among the two strains, the latter produced maxima of 4.31, 2.98, and 1.77 g/L rhamnolipid biosurfactant using soybean oil, safflower oil, and glycerol, respectively. The yield of biosurfactant steadily increased even after the bacterial cultures reached the stationary phase of growth. Characterization of rhamnolipids using mass spectrometry revealed the presence of dirhamnolipids (Rha-Rha-C(10)-C(10)). Emulsification activity of the rhamnolipid biosurfactant produced by P. aeruginosa DS10-129 was greater than 70% using all the hydrocarbons tested, including xylene, benzene, hexane, crude oil, kerosene, gasoline, and diesel. P. aeruginosa GS9-119 emulsified only hexane and kerosene to that level.  相似文献   

2.
3.
4.
由中国科学院南海海洋研究所提供的一株生物表面活性剂生产菌,经菌落、菌体形态和16S rDNA序列分析,鉴定为芽孢杆菌属,命名为Bacillus SCUT09.初步优化了该菌株的培养条件,最佳碳、氮源分别为木薯淀粉、牛肉膏,最利于Bacillus SCUT09生长和生物表面活性剂积累的条件为:NaCl 1%,pH 6.5...  相似文献   

5.
海洋微生物有机磷降解酶的纯化与性质研究   总被引:4,自引:0,他引:4  
从长期受有机磷农药污染的海水中分离得到1株能高效降解农药的芽胞杆菌M-1,通过离子交换层析、凝胶过滤层析等方法从发酵液中分离纯化了有机磷农药降解酶,SDS-PAGE测得该酶的分子质量约为45 kD。酶反应最适pH为7.5,最适反应温度为30℃,30℃下保温30 min,酶活力基本不变,高于30℃酶活力则迅速下降;K 、Na 、Ca2 、Mn2 对酶活性有促进作用,Hg2 、Zn2 和Cu2 等对酶有抑制作用。  相似文献   

6.
International Microbiology - The marine bacterial exopolysaccharides (EPS) have transfigured the biotech sector with their myriad applications and prospects. This work was carried out to...  相似文献   

7.
A bacterial strain able to degrade various sulfated galactans (carrageenans and agar) was isolated from the marine red alga Delesseria sanguinea. From the cell-free supernatant of cultures grown on crude lambda-carrageenan, a kappa-carrageenase was purified by ammonium sulfate fractionation, gel filtration on Sephacryl S 200 HR and ion-exchange chromatography on DEAE--Sepharose-CL6B. The purified kappa-carrageenase was detected as a single protein upon SDS/PAGE. Its molecular mass was estimated at 40 kDa. Activity was observed against kappa-carrageenan over the pH range 5.0-8.5 and was optimal at pH 7.2 in Tris buffer or 7.0 in Mops buffer. The enzyme activity remained stable at 30 degrees C, but only for up to 1 h at 40 degrees C. Analysis of the degradation products of the kappa-carrageenase by gel filtration and 13C-NMR spectroscopy indicated that the enzyme degrades kappa-carrageenan down to the level of the kappa-neocarratetraose sulfate. The properties of this new enzyme are compared with those of previously characterized carrageenases.  相似文献   

8.
Zhou  S.N.  Yang  C.Y.  Lu  Y.J.  Huang  L.  Cai  C.H.  Lin  Y.C. 《World journal of microbiology & biotechnology》1999,15(6):745-746
A chitinase was separated from the culture broth of Vibrio sp. 11211 isolated from sediment from the South China Sea. The chitinase was purified 18.3-fold with 33% recovery by ammonium sulphate precipitation and chromatography. The subunit molecular weight of the enzyme was estimated by SDS-PAGE to be about 30kDa. The enzyme showed optimum pH at 6.5 and optimum temperature at 50°C, and was stable in the pH range of 4 to 9 and at the temperature below 40°C.  相似文献   

9.
Bacterial isolates from the gland of Deshayes of the marine shipworm (Psiloteredo healdi) produced extracellular protease activity when cultured with 1% cellulose. A protease with a relative molecular mass of 36,000 daltons as determined by SDS-PAGE and a pI of 8.6 was isolated from the medium and purified to electrophoretic homogeneity. No carbohydrate appeared to be associated with the protein. The enzyme was activated and stabilized by relatively high salt concentrations (>0.2M). Below 0.1M salt, significant protein aggregation occurred, as well as autohydrolysis of the protease, both of which resulted in the loss of activity. The specific activity of the enzyme was 65,840 proteolytic units/mg with azocasein substrate of optimal temperature (42°C), pH (9.0), and salt concentration (0.20M NaCl). The activity was stable up to 40°C, from pH 3.0 to pH 11.9, and from 0.1M to 3.5M NaCl. These stabilities, as well as the protease's stability in the presence of chelators, oxidizing agents, and heavy metals, suggest the enzyme has potential for use in relatively low temperature (40°C) industrial applications.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

10.
Criteria selected for screening of biosurfactant production by Bacillus megaterium were hemolytic assay, bacterial cell hydrophobicity and the drop-collapse test. The data on hemolytic activity, bacterial cell adherence with crude oil and the drop-collapse test confirmed the biosurfactant-producing ability of the strain. Accordingly, the strain was cultured at different temperatures, pH values, salinity and substrate (crude oil) concentration in mineral salt medium to establish the optimum culture conditions, and it was shown that 38°C, 2.0% of substrate concentration, pH 8.0 and 30‰ of salt concentration were optimal for maximum growth and biosurfactant production. Laboratory scale biosurfactant production in a fermentor was done with crude oil and cheaper carbon sources like waste motor lubricant oil and peanut oil cake, and the highest biosurfactant production was found with peanut oil cake. Characterization of partially purified biosurfactant inferred that it was a glycolipid with emulsification potential of waste motor lubricant oil, crude oil, peanut oil, diesel, kerosene, naphthalene, anthracene and xylene.  相似文献   

11.
Summary Bacillus thermoalkalophilus isolated from termite-infested mound soils of the semi-arid zones of India had the ability to produce good amounts of xylanase(s) from cheap agricultural wastes. Of the two hemicellulosic substrates tested, bagasse was found to be the better inducer for xylanase production. Alkali treatment of bagasse and rice husk had varied effects on enzyme production. The enzyme preparation had activity optima at 60° C and 70° C and a half-life of 60 min at 65° C. The enzyme was stable for 24 h over a pH range of 4.0–6.0, while maximum activity was observed at pH 6.0–7.0. Enzyme production and activity were inhibited by the end-product of xylan hydrolysis, xylose. Offprint requests to: Ajit Varma  相似文献   

12.
By constructing the genomic library, a ??-glucosidase gene, with a length of 2,382?bp, encoding 793 amino acids, designated bgla, is cloned from a marine bacterium Aeromonas sp. HC11e-3. The enzyme is expressed successfully in the recombinant host Escherichia coli BL21 (DE3) and purified using glutathione affinity purification system. It shows the optimal activity at pH 6, 55?°C and hydrolyzes aryl-glucoside specially. Ca2+, Mn2+, Zn2+, Ba2+, Pb2+, Sr2+ can activate the enzyme activity, whereas SDS, EDTA, DTT show slight inhibition to the enzyme activity. Homologous comparing shows that the enzyme belongs to glycosyl hydrolase family 3, exhibiting 46?% identity with a fully characterized glucosidase from Thermotoga neapolitana DSM 4359. Such results provide useful references for investigating other glucosidases in the glycosyl family 3 as well as developing glucosidases using in suitable industrial area.  相似文献   

13.
Alkali-treated corn stalk gave maximum xylanase production at supporting growth of Streptomyces HM-15. Xylanase was stable for 24 h over a pH range of 5.0 to 7.0, had optimal activity between 50 and 60°C and a halflife of 5 h at 60°C. Xylanase production and activity were inhibited by xylose.The authors are with Department of Biosciences, Sardar Patel University. Vallabh Vidyanagar-388120, Gujarat, India.  相似文献   

14.
The characteristics of a bacteriocin from Ruminococcus albus 7 and its potential as an antibiotic alternative were examined in this study. The addition of 3 μM 3-phenylpropanoic acid (PPA) and 0.2% Tween 80 to the culturing medium improved bacteriocin production by 2.5-fold. Native polyacrylamide gel electrophoresis of the antagonistically active gel filtration fraction established that the molecular weight of the R. albus 7 bacteriocin was approximately 36 kDa. The bacteriocin was sensitive to pepsin, protease, and pancreatin, and was inactivated by heating at 65 °C for 1 h. Simulating in vitro avian digestion decreased the antagonistic activity by 74.7%, but the addition of 1% bovin serum albumin restored 13% of the lost antagonistic activity. Following ion-exchange purification, the bacteriocin had sufficient antagonistic activity against five tested pathogenic strains, but the addition of a protectant is necessary for utilization of bacteriocin of R. albus 7 as an antibiotic alternative in animal feed.  相似文献   

15.
The production, characterization and antioxidant activities in vitro of exopolysaccharides (EPS) from endophytic bacterium Paenibacillus polymyxa EJS-3 were investigated. For EPS production, the preferable culture conditions were 24 °C and pH 8 for 60 h with sucrose and yeast extract as the carbon and nitrogen sources, respectively. Notably, sucrose concentration was the prominent factor, and the maximum yield of EPS (22.82 g/L) was obtained at a sucrose concentration of 160 g/L. The crude EPS was purified by chromatography of DEAE-52 and Sephadex G-100, affording EPS-1 and EPS-2 with molecular weights of 1.22 × 106 and 8.69 × 105 Da, respectively. They were composed of mannose, fructose and glucose in a molar ratio of 2.59:29.83:1 and 4.23:36.59:1, respectively. In addition, both crude and purified EPS showed strong scavenging activities on superoxide and hydroxyl radicals, and their antioxidant activities decreased in the order of crude EPS > EPS-2 > EPS-1.  相似文献   

16.
The aerobic respiratory system of the hydrocarbonoclastic marine bacterium Pseudomonas nautica 617 ends with a single terminal oxidase. It is a heme-containing membranous protein which has been demonstrated only to reduce molecular oxygen to hydrogen peroxide [Denis, M., Arnaud S. & Malatesta, F. (1989) FEBS Lett. 247, 475-479]. The purification of this oxidase was achieved in a single step through by DEAE-Trisacryl chromatography. SDS/PAGE showed the presence of four subunits. The pI was found to be 4.45 and a Mr of 130,000 was determined by gel filtration. The amino acid composition of the purified terminal oxidase has been determined. About 52% of the residues are hydrophobic, strengthening the membranous nature of this bacterial oxidase. Room temperature optical spectra are typical of heme b with a 560-nm band for the reduced form in the alpha range. The prosthetic group is made of two hemes b, one high-spin (S = 5/2, gl = 5.9, g parallel approximately 2.0), the other low-spin (S = 1/2, gz = 2.94, gy = 2.27). No other metal centre was detected by EPR. The two hemes remained unresolved in optical spectra, even at low temperature, and throughout redox titration. They behaved potentiometrically like a one-electron, single redox couple, with Em = 87 +/- 10 mV at pH 7.2 and 293 K. The purified oxidase did not oxidize ferrocytochrome c, but displayed quinol oxidase activity both with the native quinone (2419 nmol O2.min-1.mg protein-1 and commercially available coenzyme (101.74 nmol O2.min-1.mg protein-1). Exposure of the reduced enzyme to CO induced the collapse of alpha and beta bands as occurred during reoxidation. In contrast, NaCN and NaN3 fully inhibited the oxidase activity. Results are discussed with respect to other purified quinol oxidases.  相似文献   

17.
Production of biosurfactant by crude oil degrading bacteria for use in microbial enhanced oil recovery was investigated. Crude oil utilizing bacteria were isolated from soil by enrichment method on oil agar at 30 °C for 5 days. The isolates were identified and screened for biosurfactant production using blood haemolysis and emulsification tests. IR and GC–MS analyses were carried out to detect the type of biosurfactant. The biosurfactant was purified and its stability at various pH, temperature and salinity levels was studied. The organisms were identified as: Achromobacter xylosoxidans subspecies xylosoxidans, Bacillus licheniformis, Proteus vulgaris, Proteus mirabilis, Serratia marcescens, Sphingomonas paucimobilis and Micrococcus kristinae. Emulsification test (E24) revealed that Serratia marcescens had the highest emulsification index of 87%. GC–MS indicated the biosurfactants as lipopeptides. The biosurfactant can be used in EOR under various environmental conditions.  相似文献   

18.
D H Farrell  J H Crosa 《Biochemistry》1991,30(14):3432-3436
Vibrio anguillarum is a pathogenic marine bacterium which causes the disease vibriosis in salmonid fish, which is characterized by a fatal hemorrhagic septicemia accompanied by massive tissue destruction. In this paper, the purification of the major caseinolytic extracellular protease from V. anguillarum is presented. The purification steps include ammonium sulfate precipitation, DEAE-Sepharose chromatography, Sephacryl S-200 chromatography, and DEAE high-pressure liquid chromatography. The purified protease migrates with Mr = 38,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A slightly larger protease of Mr 40,000 is also separated by this procedure, but accounts for only a minor fraction of the caseinolytic activity. The Mr 38,000 protease displays a broad pH activity profile in the neutral to basic range. It is not inhibited by serine, cysteine, or acid protease inhibitors, but is inhibited by EDTA and 1,10-phenanthroline, suggesting that it is a metalloprotease. The activity of the EDTA-inactivated protease could be partially restored by the addition of Ca2+ and Zn2+ together. The molecular weight and inhibition data show some similarities with proteases isolated from other Vibrio species such as Vibrio cholerae and Vibrio vulnificus.  相似文献   

19.
Marine microbes are a rich source of bioactive compounds, such as drugs, enzymes, and biosurfactants. To explore the bioactive compounds from our marine natural product library, an oil emulsification assay was applied to discover biosurfactants and bioemulsifiers. A spore-forming bacterial strain from sea mud was found to produce bioemulsifiers with good biosurfactant activity and a broad spectrum of antimicrobial properties. It was identified as Bacillus velezensis H3 using genomic and phenotypic data analysis. This strain was able to produce biosurfactants with an optimum emulsification activity at pH 6.0 and 2% NaCl by using starch as the carbon source and ammonium sulfate as the nitrogen source. The emulsification-guided isolation and purification procedure led to the discovery of the biosurfactant components, which were mainly composed of nC14-surfactin and anteisoC15-surfactin as determined by NMR and MS spectra. These compounds can reduce the surface tension of phosphate-buffered saline (PBS) from 71.8 to 24.8 mN/m. The critical micelle concentrations (CMCs) of C14-surfactin and C15-surfactin in 0.1 M PBS (pH 8.0) were determined to be 3.06?×?10-5 and 2.03?×?10-5?mol/L, respectively. The surface tension values at CMCs for C14-surfactin and C15-surfactin were 25.7 and 27.0 mM/m, respectively. In addition, the H3 biosurfactant exhibited antimicrobial activities against Staphyloccocus aureus, Mycobacterium, Klebsiella peneumoniae, Pseudomonas aeruginosa, and Candida albicans. Thus B. velezensis H3 is an alternative surfactin producer with potential application as an industrial strain for the lipopeptide production.  相似文献   

20.
A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett–Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号