首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone homeostasis is regulated through osteoclasts and osteoblasts. Osteoporosis, which is induced with its accompanying decrease in bone mass with increasing age, is widely recognized as a major public health problem. Bone loss may be due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. There is growing evidence that nutritional and food factors may play a part in the prevention of bone loss with aging and have been to be worthy of notice in the prevention of osteoporosis. Zinc, an essential trace element, or genistein, which are contained in soybeans, has been shown to have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. These factors have an effect on protein synthesis and gene expression, which are related to bone formation in osteoblastic cells and bone resorption in osteoclastic cells. The combination of zinc and genistein is found to reveal the synergistic effect on bone anabolic effect. The oral administration of those factors has been shown to prevent on bone loss in ovariectomized rats, an animal model for osteoporosis, indicating a role in the prevention of osteoporosis. Supplemental intake of ingredient with the combination of zinc and genistein has been shown to have a preventive effect on osteoporosis in human subjects, suggesting a role in the prevention of bone loss.  相似文献   

2.
Osteoporosis is a serious health problem in both Caucasians and Asians. Caucasians and Asians are two distinct major ethnic groups, which may have differential genetic determination underlying complex genetic diseases such as osteoporosis. However, to date, there has been no systematic review focusing on the aspect of ethnic difference in risk to osteoporosis and its potential underlying genetic determination between Asians and Caucasians. Here, we firstly review diverse aspects of osteoporosis-related differences, including the differences of epidemiology of osteoporotic fractures, peak bone mass, bone loss, bone area, bone geometry and drug treatment response between Asians and Caucasians. Then, we provide some potential genetic evidence on the different heritability and inheritance mode of bone phenotypes, the different osteoporosis candidate genes and the differential results in related molecular studies between them, to explain the above osteoporosis-related phenotypic differences. The results suggest that the osteoporosis-related phenotypic differences between Asians and Caucasians may be partially the result of the different ethnic genetic background. The present review may increase our understanding of potential different mechanisms related to ethnicity in pathogenesis of osteoporosis for effective and potentially customized treatments in different major ethnic groups.  相似文献   

3.
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that couples ATP hydrolysis to proton pumping across membranes. Recently, there is increasing evidence that V-ATPase may contribute to the pathogenesis of bone resorption disorders due to it is predominantly expressed in osteoclasts also function in bone resorption making it a good candidate in a therapeutic target for osteoporosis. Osteoclasts are capable of generating an acidic microenvironment necessary for bone resorption by utilizing V-ATPases to pump protons into the resorption lacuna. In addition, it has been shown that therapeutic interventions have been proposed that specifically target inhibition of the osteoclast proton pump. Modulation of osteoclastic V-ATPase activity has been considered to be a suitable therapy for the treatment of osteoporosis. All theses findings suggest that V-ATPase have important biological effects in bone resorption that might be a promising therapeutic target for osteoporosis. In this review, we will briefly discuss the biological features of osteoporosis and summarize recent advances on the role of V-ATPase in the pathogenesis and treatment of osteoporosis.  相似文献   

4.
《Endocrine practice》2007,13(5):513-520
ObjectiveTo review current consensus and controversy surrounding the diagnosis and treatment of osteoporosis in childhood and adolescence.MethodsThe medical literature was reviewed with emphasis on the importance of early skeletal health, risk factors for bone fragility, and the diagnosis and management of children at risk for osteoporosis.ResultsChildhood and adolescence are critical periods for optimizing bone growth and mineral accrual. Bone strength is determined by bone size, geometry, quality, and mass—variables that are influenced by genetic factors, activity, nutrition, and hormones. For children with genetic skeletal disorders or chronic disease, bone growth and mineral accrual may be compromised, increasing the lifetime risk of osteoporosis. The goal for the clinician is to identify children at greatest risk for future fragility fracture. Bone densitometry and turnover markers are challenging to interpret in children. Prevention and treatment of bone fragility in children are less well established than in adults. Optimizing nutrition and activity may not restore bone health, but the drug armamentarium is limited. Sex steroid replacement has not proven effective in restoring bone mass in patients with anorexia nervosa or exercise-associated amenorrhea. Bisphosphonates can increase bone mass and may reduce bone pain and fractures, most convincingly in patients with osteogenesis imperfecta. Further studies are needed to establish the safety, efficacy, and optimal drug, duration, and dosage in pediatric patients.ConclusionBone health during the first 2 decades contributes to the lifetime risk of osteoporosis. Further research is needed to develop evidence-based recommendations for the diagnosis and treatment of osteoporosis in childhood. (Endocr Pract. 2007;13:513-520)  相似文献   

5.
As a result of the demographic shift towards an ageing population, all industrialized countries face a growing prevalence of chronic age-related conditions, particularly osteoporosis. This multifaceted disease is defined as "a systemic skeletal disorder" characterised by low bone mass and micro-architectural deterioration of bone tissue, which results in increased bone fragility and susceptibility to fracture. Two main categories have been suggested: post-menopausal and senile osteoporosis. The prevention of osteoporosis through dietary means is especially challenging in technologically advanced societies. Indeed, within Europe, conspicuous differences are encountered in the severity of osteoporosis, the lowest incidence being reported in the Mediterranean area. The beneficial effect is attributed mainly to specific eating pattern. These food items contain a complex array of naturally occurring bioactive molecules with antioxidant, anti-inflammatory and alkalinising properties, that may contribute to the bone-sparing effect of Mediterranean diet.  相似文献   

6.
Given the increasing risk of fractures with aging in western countries, there is a need for the development of safe and efficient anti-osteoporotic drugs for the prevention and treatment of osteoporosis. Recent studies have provided evidence for an essential role of RANKL (Receptor Activator of Nuclear Factor-kappa B Ligand) and its decoy receptor osteoprotegerin in the control of osteoclast differentiation and survival. Post-menopausal osteoporosis results from an imbalance between resorption and formation associated with decreased OPG/RANKL. Targeting the OPG/RANKL system may therefore have a beneficial impact in osteoporosis. Accordingly, the development of novel strategies targeting OPG/RANKL using anti-RANKL or therapeutic intervention proved to be efficient to reduce bone resorption and to prevent bone loss in postmenopausal osteoporosis. This opens the way for novel therapeutic strategies for correcting bone metabolism in various pathologic disorders characterized by increased bone remodelling and bone loss.  相似文献   

7.
Effect of modulated pulsed electromagnetic fields (PEMFs; carrier frequency, 14 MHz. modulated at 16 Hz of amplitude 10 V peak to peak) on sciatic neurectomy induced osteoporosis in rat femur and tibia resulted in statistically significant increase in bone mineral density, and deceleration in bone resorption process and consequently further osteoporosis in rat bone. These results suggest that such an effective window of pulsed radio frequency fields may be used therapeutically for the treatment of osteoporosis.  相似文献   

8.
Osteoporosis is a severe skeletal disorder. Patients have a low bone mineral density and bone structural deterioration. Mounting lines of evidence suggest that inappropriate apoptosis of osteoblasts/osteocytes leads to maladaptive bone remodelling in osteoporosis. It has been suggested that transplantation of stem cells, including mesenchymal stem cells, may alter the trajectory of bone remoulding and mitigate osteoporosis in animal models. However, stem cells needed to be carefully stored and characterized before usage. In addition, there is great batch‐to‐batch variation in stem cell production. Here, we fabricated therapeutic polymer microparticles from the secretome and membranes of mesenchymal stem cells (MSCs). These synthetic MSCs contain growth factors secreted by MSCs. In addition, these particles display MSC surface molecules. In vitro, co‐culture with synthetic MSCs increases the viability of osteoblast cells. In a rat model of ovariectomy‐induced osteoporosis, injection of synthetic MSCs mitigated osteoporosis by reducing cell apoptosis and systemic inflammation, but increasing osteoblast numbers. Synthetic MSC offers a promising therapy to manage osteoporosis.  相似文献   

9.
Role of polypeptides in the treatment and diagnosis of osteoporosis.   总被引:8,自引:0,他引:8  
B Kundu  S K Khare  G Singh 《Peptides》1999,20(4):523-537
Osteoporosis is a common disorder characterized by reduced bone mineral density, deterioration of the microarchitecture of bone tissue and increased risk of fracture. The aim of treatment of osteoporosis is to maintain and, ideally, to restore bone strength safely. In recent years the role of polypeptide growth factors in bone metabolism has begun to appear. It has been proposed that alterations in the expression or production of growth factor can modulate the proliferation and activity of bone forming cells. In this direction, the role of structurally diverse peptides for the management and diagnosis of osteoporosis has attracted the attention of many investigators. This paper reviews numerous findings concerning the use of polypeptides, hormones, and growth factors, for the management of osteoporosis. Many of the compounds mentioned here are experimental prototypes of new therapeutic classes. Though it is unlikely that some of the compounds may ever be used clinically, development of safe and efficacious agents in each class will define the future course of therapy for osteoporosis.  相似文献   

10.
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.  相似文献   

11.
Bone homeostasis is maintained by a balance between bone resorption by osteoclasts and bone formation by osteoblasts, and alterations in bone metabolism can lead to diseases such as osteoporosis. Inter-cellular and intra-cellular signaling, originating from the immune system, the largest source of cell-derived regulatory signals, are involved in these processes. Immune-competent cells such as macrophages and lymphocytes deliver cell-cell signaling through soluble factors such as cytokines and through direct contact with the cells. Such immunological signals to the bone are transmitted primarily through osteoblasts or direct stimulation of osteoclasts to induce osteoclast maturation or bone resorption, which may in turn lead to the disequilibrium of bone metabolism. Inflammatory diseases such as rheumatoid arthritis are good examples of such a process, in which immunological signals play a central role in the pathogenesis of the accompanying secondary osteoporosis. We will achieve a better understanding of the pathogenesis of bone metabolism in osteoporosis through immune signaling, and thereby develop improved therapeutic strategies for these conditions.  相似文献   

12.
13.
Senile osteoporosis is one of the major health problems in an aging society. Decreased bone formation due to osteoblast dysfunction may be one of the causes of aging-related bone loss. With increasing evidence suggesting that multiple microRNAs (miRNAs) play important roles in osteoblast function, the relationship between miRNAs and senile osteoporosis has become a popular research topic. Previously, we confirmed that mechanoresponsive miR-138-5p negatively regulated bone anabolic action. In this study, the miR-138-5p level was found to be negatively correlated with BMD and osteogenic markers in bone specimens of senile osteoporotic patients by bioinformatic analysis and experimental verification. Furthermore, high miR-138-5p levels aggravated the decrease of aged osteoblast differentiation in vitro and led to worse bone loss in aged osteoblastic miR-138-5p transgenic mice in vivo. We also previously identified that the target of miR-138-5p, microtubule actin cross-linking factor 1 (MACF1), could attenuate senile osteoporosis. Here, miR-138-5p was demonstrated to regulate aged osteoblast differentiation by targeting MACF1. Finally, the therapeutic inhibition of miR-138-5p counteracted the decrease in bone formation and aging-related bone loss in aged mice. Overall, our results highlight the crucial roles and the molecular mechanism of miR-138-5p in aging-related bone loss and may provide a powerful therapeutic target for ameliorating senile osteoporosis.  相似文献   

14.
《Endocrine practice》2010,16(5):855-863
ObjectiveTo describe recently discovered agents for the management of osteoporosis.MethodsA literature review (PubMed search) was conducted to identify agents at various stages of development for osteoporosis treatment. Agents under study or review for approval were included.ResultsIn menopause, bone remodeling is increased, and agents that suppress bone resorption can stabilize bone mass. In contrast, agents that target the osteoblast can increase bone formation and bone mass. Novel antiresorptive agents can target the formation or the activity of osteoclasts. They include denosumab, an antibody to receptor activated nuclear factor kB; new selective estrogen receptor modulators, such as bazedoxifene; and cathepsin K inhibitors, such as odanacatib. Src kinase inhibitors are in the early phases of development. Parathyroid hormone is the only approved anabolic agent for the treatment of osteoporosis. Novel anabolic therapies for osteoporosis may include the use of factors with anabolic properties for bone or the neutralization of growth factor antagonists. Recent discoveries have demonstrated that the Wnt/β-catenin signaling pathway has a central role in osteoblastic cell differentiation. Antibodies to Wnt antagonists, such as sclerostin, are under development as new therapeutic approaches for osteoporosis. Anabolic therapies have the potential to enhance bone mass, but their long-term safety must be proven.ConclusionsNew developments in the treatment of osteoporosis include novel antiresorptive and anabolic agents. Their success will depend on their long-term effectiveness and safety profile. (Endocr Pract. 2010;16:855-863)  相似文献   

15.
Several years ago we hypothesized that products of lipid and lipoprotein oxidation may contribute to pathophysiology of osteoporosis (F. Parhami, Curr. Opin. Lipidol. 8 (1997) 312), and that their effects on artery wall and bone cells may explain the parallel development of osteoporosis and atherosclerosis in the same subjects (R. Boukhris, JAMA 219 (1972) 1307; M.A. Frye, Bone Miner. 19 (1992) 185). Since then, new evidence has accumulated in support of this hypothesis and its possibility is being further tested by investigators in both vascular and bone fields (A.D. Watson, J. Biol. Chem. 272 (1997) 13597). This review will summarize the evidence to date that support the role of oxidized lipids in osteoporosis, and will address some of the issues that need further examination in order to establish whether hyperlipidemia and susceptibility to lipid oxidation may serve as risk factors for osteoporosis.  相似文献   

16.
In order to examine the effect of polysaccharides from morinda officinalis (MOP) on bone quality of osteoporosis rats. The osteoporosis in rats was induced by ovariectomy, and MOP (100 or 300mg/kg) was orally administrated once daily. The animals were assessed 30 days after the operation for bone mineral density, serum cytokines level and mineral element concentration. MOP administration in rats resulted in an increase in bone mineral density and mineral element concentration, a decrease in serum cytokines level, which indicated that MOP administration may play an important role in the development of osteoporosis.  相似文献   

17.

Background

Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels.

Methods and Findings

We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studies revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced ostoeporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density.

Conclusion

Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts.  相似文献   

18.
Osteoporosis is a condition characterized by low bone mass and increased bone fragility, putting patients at risk of fractures, which are major causes of morbidity substantially in older people. Osteoporosis is currently attributed to various endocrine, metabolic and mechanical factors. However, emerging clinical and molecular evidence suggests that inflammation also exerts significant influence on bone turnover, inducing osteoporosis. Numerous proinflammatory cytokines have been implicated in the regulation of osteoblasts and osteoclasts, and a shift towards an activated immune profile has been hypothesized as important risk factor. Chronic inflammation and the immune system remodelling characteristic of ageing, as well as of other pathological conditions commonly associated with osteoporosis, may be determinant pathogenetic factors. The present article will review the current perspectives on the interaction between bone and immune system in the elderly, providing an interpretation of osteoporosis in the light of inflamm-ageing.  相似文献   

19.
Osteocyte viability may play a significant role in the maintenance and integrity of bone. Bone loss due to osteoporosis may be due in part to osteocyte cell death. We have identified a factor that will protect both osteoblasts and osteocytes from cell death due to agents known to be responsible for various forms of osteoporosis. Not only does estrogen preserve osteoblast and osteocyte viability, but so does a molecule called CD40Ligand. This molecule is expressed on activated T lymphocytes, human dendritic cells, and human vascular endothelial cells, whereas its receptor CD40 is expressed on normal epithelium, B cells, and dendritic cells. CD40Ligand protects osteoblasts and the MLO-Y4 osteocyte-like cells against apoptosis induced by glucocorticoids, tumor necrosis factor alpha or etoposide. As tumor necrosis factor a has been shown to be responsible for post-menopausal bone loss and glucocorticoids induce dramatic bone loss, this finding has important implications with regards to potential therapy for both post-menopausal and steroid-induced osteoporosis.  相似文献   

20.
Although it is clear that osteoporosis is associated with a reduction in bone mass and a fragile skeleton, it is not understood whether the chemical composition of osteoporotic bone is different from normal bone. In this study, cynomolgus monkeys (Macaca fascicularis) were administered fluorochrome labels at one and two years after ovariectomy (Ovx) or Sham ovariectomy (intact), that were taken up into newly remodeled bone. Using fluorescence-assisted synchrotron infrared microspectroscopy, the chemical composition of bone from intact versus Ovx monkeys has been compared. Results from overall composition distributions (labeled + non-labeled bone) reveal similar carbonate/protein and phosphate/protein ratios, but increased acid phosphate content and different collagen structure in the Ovx animals. Analysis of the fluorochrome-labeled bone indicates similar degrees of mineralization in bone remodeled after one year, but decreased mineralization in Ovx bone remodeled two years after surgery. Thus, bone from monkeys with osteoporosis can be characterized as having abnormal collagen structure and reduced rates of mineralization. Coupled with factors such as trabecular architecture and bone shape and size, these ultrastructural factors may play a contributing role in the increased bone fragility in osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号