首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.  相似文献   

2.
The interaction between cancer vaccine adjuvants and myeloid-derived suppressor cells (MDSCs) is currently poorly understood. Very small size proteoliposomes (VSSP) are a nanoparticulated adjuvant under investigation in clinical trials in patients with renal carcinoma, breast cancer, prostate cancer, and cervical intraepithelial neoplasia grade III. We found that VSSP adjuvant induced a significant splenomegaly due to accumulation of CD11b(+)Gr-1(+) cells. However, VSSP-derived MDSCs showed a reduced capacity to suppress both allogeneic and Ag-specific CTL response compared with that of tumor-induced MDSCs. Moreover, splenic MDSCs isolated from tumor-bearing mice treated with VSSP were phenotypically more similar to those isolated from VSSP-treated tumor-free mice and much less suppressive than tumor-induced MDSCs, both in vitro and in vivo. Furthermore, different from dendritic cell vaccination, inoculation of VSSP-based vaccine in EG.7-OVA tumor-bearing mice was sufficient to avoid tumor-induced tolerance and stimulate an immune response against OVA Ag, similar to that observed in tumor-free mice. This effect correlated with an accelerated differentiation of MDSCs into mature APCs that was promoted by VSSP. VSSP used as a cancer vaccine adjuvant might thus improve antitumor efficacy not only by stimulating a potent immune response against tumor Ags but also by reducing tumor-induced immunosuppression.  相似文献   

3.
Heat shock proteins (Hsps) are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion, metastasis, death, and recognition by the immune system. We review the current status of the role of Hsp expression in cancer with special emphasis on the clinical setting. Although Hsp levels are not informative at the diagnostic level, they are useful biomarkers for carcinogenesis in some tissues and signal the degree of differentiation and the aggressiveness of some cancers. In addition, the circulating levels of Hsp and anti-Hsp antibodies in cancer patients may be useful in tumor diagnosis. Furthermore, several Hsp are implicated with the prognosis of specific cancers, most notably Hsp27, whose expression is associated with poor prognosis in gastric, liver, and prostate carcinoma, and osteosarcomas, and Hsp70, which is correlated with poor prognosis in breast, endometrial, uterine cervical, and bladder carcinomas. Increased Hsp expression may also predict the response to some anticancer treatments. For example, Hsp27 and Hsp70 are implicated in resistance to chemotherapy in breast cancer, Hsp27 predicts a poor response to chemotherapy in leukemia patients, whereas Hsp70 expression predicts a better response to chemotherapy in osteosarcomas. Implication of Hsp in tumor progression and response to therapy has led to its successful targeting in therapy by 2 main strategies, including: (1) pharmacological modification of Hsp expression or molecular chaperone activity and (2) use of Hsps in anticancer vaccines, exploiting their ability to act as immunological adjuvants. In conclusion, the present times are of importance for the field of Hsps in cancer, with great contributions to both basic and clinical cancer research.  相似文献   

4.
The Hsp70 class of heat shock proteins (Hsps) has been implicated at multiple points in the immune response, including initiation of proinflammatory cytokine production, antigen recognition and processing, and phenotypic maturation of antigen-presenting cells (APCs). This class of chaperones is highly conserved in both sequence and structure, from prokaryotes to higher eukaryotes. In all cases, these chaperones function to bind short segments of either peptides or proteins through an adenosine triphosphate-dependent process. In addition to a possible role in antigen presentation, these chaperones have also been proposed to function as a potent adjuvant. We compared 4 evolutionary diverse Hsp70s, E. coli DnaK, wheat cytosolic Hsc70, plant chloroplastic CCS1, and human Hsp70, for their ability to prime and augment a primary immune response against herpes simplex virus-1 (HSV1). We discovered that all 4 Hsp70s were highly effective as adjuvants displaying similar ability to lipopolysaccharides in upregulating cytokine gene expression. In addition, they were all capable of inducing phenotypic maturation of APCs, as measured by the display of various costimulatory molecules. However, only the human Hsp70 was able to mediate sufficient cross-priming activity to afford a protective immune response to HSV1, as judged by protection from a lethal viral challenge, in vitro proliferation, cytotoxicity, and intracellular interferon-gamma production. The difference in immune response generated by the various Hsp70s could possibly be due to their differential ability to interact productively with other coreceptors and different regulatory cochaperones.  相似文献   

5.
Annual outbreaks of seasonal influenza are controlled or prevented through vaccination in many countries. The seasonal vaccines used are either inactivated, currently administered parenterally, or live-attenuated given intranasally. In this study three mucosal adjuvants were examined for the influence on the humoral (mucosal and systemic) and cellular influenza A-specific immune responses induced by a nasally administered vaccine. We investigated in detail how the anionic Endocine™ and the cationic adjuvants N3OA and N3OASq mixed with a split inactivated influenza vaccine induced influenza A-specific immune responses as compared to the vaccine alone after intranasal immunization. The study showed that nasal administration of a split virus vaccine together with Endocine™ or N3OA induced significantly higher humoral and cell-mediated immune responses than the non-adjuvanted vaccine. N3OASq only significantly increased the cell-mediated immune response. Furthermore, nasal administration of the influenza vaccine in combination with any of the adjuvants; Endocine™, N3OA or N3OASq, significantly enhanced the mucosal immunity against influenza HA protein. Thus the addition of these mucosal adjuvants leads to enhanced immunity in the most relevant tissues, the upper respiratory tract and the systemic circulation. Nasal influenza vaccination with an inactivated split vaccine can therefore provide an important mucosal immune response, which is often low or absent after traditional parenteral vaccination.  相似文献   

6.
The global population remains vulnerable in the face of the next pandemic influenza virus outbreak, and reformulated vaccinations are administered annually to manage seasonal epidemics. Therefore, development of a new generation of vaccines is needed to generate broad and persistent immunity to influenza viruses. Here, we describe three adjuvants that enhance the induction of stalk-directed antibodies against heterologous and heterosubtypic influenza viruses when administered with chimeric HA proteins. Addavax, an MF59-like nanoemulsion, poly(I:C), and an RNA hairpin derived from Sendai virus (SeV) Cantell were efficacious intramuscularly. The SeV RNA and poly(I:C) also proved to be effective respiratory mucosal adjuvants. Although the quantity and quality of antibodies induced by the adjuvants varied, immunized mice demonstrated comparable levels of protection against challenge with influenza A viruses on the basis of HA stalk reactivity. Finally, we present that intranasally, but not intramuscularly, administered chimeric HA proteins induce mucosal IgA antibodies directed at the HA stalk.  相似文献   

7.
Attenuated recombinant H5N1 influenza virus was constructed to develop a safe H5N1 influenza vaccine. The immunogenicity and protective effect of the vaccine prepared from haemagglutinin-modified recombinant H5N1 influenza virus was evaluated in mice intranasally co-administered with cholera toxin B subunit containing a trace amount of holotoxin (CTB*), synthetic double-stranded RNA, poly (I:C) or chitin microparticles (CMP) as adjuvants. Intranasal administration of recombinant H5 HA split vaccine with CTB* or poly(I:C) and/or CMP elicited an immunological response with both anti-H5 HA IgA in the nasal wash and anti-H5 HA IgG antibody in the serum, and showed a protective against lethal H5N1 A/Hong Kong/483/97 (HK483) infection. We also demonstrated that intranasal co-administration of antigen with both poly (I:C) and CMP enhanced the expression of Toll-like receptor (TLR) 3, TLR7 in the spleen. These results indicate that poly (I:C) and CMP are highly effective as mucosal adjuvants for use with the nasal H5N1 vaccine.  相似文献   

8.
Adjuvants are essential components of vaccines that augment an immunological reaction of organism. New vaccines based on recombinant proteins and DNA, are more save than traditional vaccines but they are less immunogenic. Therefore, there is an urgent need for the development of new, improved vaccine adjuvants. There are two classes of adjuvants: vaccine delivery systems (e.g. emulsions, microparticles, immune-stimulating complexes ISCOMs, liposomes) and immunostimulatory adjuvants (e.g. lipopolysaccharide, monophosphoryl lipid A, CpG DNA, or muramylpeptides). The discovery of more potent and safer adjuvants may allow to development better prophylactic and therapeutic vaccines against chronic infectious (e.g., HSV, HIV, HCV, HBV, HPV, or Helicobacter pylori) and noninfectious diseases as multiple sclerosis, insulin-dependent diabetes, rheumatoid arthritis, allergy and tumors (e.g., melanoma, breast, or colon cancer).  相似文献   

9.
Extracellular heat shock proteins (HSPs) can stimulate antigen-specific immune responses. Using recombinant human (rhu)Hsp70, we previously demonstrated that through complex formation with exogenous antigenic peptides, rhuHsp70 can enhance cross-presentation by antigen-presenting cells (APCs) resulting in stronger T cell stimulation. T cell stimulatory activity has also been described for mycobacterial (myc)Hsp70. MycHsp70-assisted T cell activation has been reported to act through the binding of mycHsp70 to chemokine receptor 5 (CCR5), calcium signaling, phenotypic maturation, and cytokine secretion by dendritic cells (DCs). We report that highly purified rhuHsp70 and mycHsp70 proteins both strongly enhance cross-presentation of exogenous antigens. Augmentation of cross-presentation was seen for different APCs, irrespective of CCR5 expression. Moreover, neither of the purified Hsp70 proteins induced calcium signals in APCs. Instead, calcium signaling activity was found to be caused by contaminating nucleotides present in Hsp70 protein preparations. These results refute the hypothesis that mycHsp70 proteins require CCR5 expression and calcium signaling by APCs for enhanced antigen cross-presentation for T cell stimulation.  相似文献   

10.
In this study, we assessed the immune response of two Leishmania donovani recombinant proteins: iron superoxide dismutase B1 (SODB1) and peroxidoxin 4 (Pxn4) in BALB/c mice. Assessment of the immunogenicity of these proteins alone or combined with Toll-like receptor 9 (TLR-9) agonist (CpG ODN) or TLR-4 agonist (GLA-SE) showed that they elicit specific antibody as well as cytokine production in response to the respective antigen in vitro. The use of adjuvants augmented immunogenicity of these antigens and more importantly, skewed the immune response to a Th1-type. These results indicate that recombinant SODB1 and Pxn4 proteins are potential vaccine candidates when administered with appropriate adjuvants.  相似文献   

11.
12.
Heat shock proteins (Hsps) and molecular chaperones isolated from tumors or virally infected cells elicit an efficient CD8+ T cell response against bound antigenic peptides. This immune response is mediated by presentation of the peptides on MHC class I complexes of antigen-presenting cells (APCs), but the cellular mechanism of this presentation process is not yet understood. Here we provide evidence for the existence of a proteinaceous receptor on the surface of APCs that is specific for mammalian Hsp70. Using a flow cytometry-based assay, saturable binding of Hsp70 to the cell surface of macrophages and peripheral blood monocytes, but not of lymphocytes, can be demonstrated. The affinity of the receptor is in the sub-micromolar range (Kd < 100 nM). Only mammalian Hsc70/Hsp70, but not bacterial Hsp70, is bound with high affinity. Subsequent to binding, Hsp70 is taken up by endocytosis, resulting in an intracellular localization. Our results suggest that receptor-mediated endocytosis forms the basis for the demonstrated efficacy of Hsp70-peptide complexes as anti-tumor vaccines.  相似文献   

13.
Heat shock proteins (HSPs) are a large family of proteins with different molecular weights and different intracellular localizations. These proteins undertake crucial functions in maintaining cell homeostasis, and therefore they have been conserved during evolution. Hsp70 and Grp94/gp96, due to their peptide chaperone capacity and their ability to actively interact with professional antigen-presenting cells (APCs), are also endowed with crucial immunological functions. The immunological properties of these proteins and their implications for vaccine in human cancer will be discussed. Immunological and clinical data of phase I/II studies in melanoma and colorectal cancer patients will be reviewed.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

14.
The identification of natural adjuvants capable of selectively promoting an efficient immune response against infectious agents would represent an important advance in immunology, with direct implications for vaccine development, whose progress is generally hampered by the difficulties in defining powerful synthetic adjuvants suitable for clinical use. Here, we demonstrate that endogenous type I IFN is necessary for the Th1 type of immune response induced by typical adjuvants in mice and that IFN itself is an unexpectedly powerful adjuvant when administered with the human influenza vaccine, for inducing IgG2a and IgA production and conferring protection from virus challenge. The finding that these cytokines, currently used in patients, are necessary for full expression of adjuvant activity and are sufficient for the generation of a protective immune response opens new perspectives in understanding the basis of immunity and in vaccine development.  相似文献   

15.
It is well-established that heat shock proteins (HSPs)-peptides complexes elicit antitumor responses in prophylactic and therapeutic immunization protocols. HSPs such as gp96 and Hsp70 have been demonstrated to undergo receptor-mediated uptake by APCs with subsequent representation of the HSP-associated peptides to MHC class I molecules on APCs, facilitating efficient cross-presentation. On the contrary, despite its abundant expression among HSPs in the cytosol, the role of Hsp90 for the cross-presentation remains unknown. We show here that exogenous Hsp90-peptide complexes can gain access to the MHC class I presentation pathway and cause cross-presentation by bone marrow-derived dendritic cells. Interestingly, this presentation is TAP independent, and followed chloroquine, leupeptin-sensitive, as well as cathepsin S-dependent endosomal pathways. In addition, we show that Hsp90-chaperoned precursor peptides are processed and transferred onto MHC class I molecules in the endosomal compartment. Furthermore, we demonstrate that immunization with Hsp90-peptide complexes induce Ag-specific CD8(+) T cell responses and strong antitumor immunity in vivo. These findings have significant implications for the design of T cell-based cancer immunotherapy.  相似文献   

16.
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.  相似文献   

17.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.  相似文献   

18.
19.
Advances in vaccine adjuvants.   总被引:21,自引:0,他引:21  
M Singh  D O'Hagan 《Nature biotechnology》1999,17(11):1075-1081
Currently, aluminum salts and MF59 are the only vaccine adjuvants approved for human use. With the development of new-generation vaccines (including recombinant subunit and mucosal vaccines) that are less immunogenic, the search for more potent vaccine adjuvants has intensified. Of the novel compounds recently evaluated in human trials, immunostimulatory molecules such as the lipopolysaccharide derived MPL and the saponin derivative QS21 appear most promising, although doubts have been raised as to their safety in humans. Preclinical work with particulate adjuvants, such as the MF59 microemulsion and lipid-particle immune-stimulating complexes (Iscoms), suggest that these molecules are also potent elicitors of humoral and cellular immune responses. In addition, preclinical data on CpG oligonucleotides appear to be encouraging, particularly with respect to their ability to selectively manipulate immune responses. While all these adjuvants show promise, further work is needed to better define the mechanisms of adjuvant action. Ultimately, the development of more potent adjuvants may allow vaccines to be used as therapeutic, rather than prophylactic, agents.  相似文献   

20.
Vaccine strategies, such as influenza virus vaccination of the elderly, are highly effective at preventing disease but provide protection for only the responding portion of the vaccinees. Adjuvants improve the magnitude and rates of responses, but their potency must be attenuated to minimize side effects. Topical delivery of strong adjuvants such as heat-labile enterotoxin from Escherichia coli (LT) induces potent immune responses. We hypothesized that LT delivered alone in an immunostimulating (LT-IS) patch placed on the skin at the site of injection could augment the immune response to injected vaccines. This was based on the observation that topically applied LT induces migration of activated antigen-presenting cells (APCs) from the skin to the proximal draining lymph node (DLN), and that APCs loaded with antigen by injection in the same anatomical region also migrate to the same DLN. We observed that when influenza virus vaccine is injected and an LT-IS patch is placed to target the same DLN, the influenza virus antibody response is enhanced. Similarly, influenza virus-specific T cells isolated from the lungs show increased levels of gamma interferon and interleukin-4 production. An LT-IS patch placed near an injected vaccine also leads to increased levels of hemagglutination inhibition titers, enhanced mucosal immunoglobulin A responses, and enhanced antigen presentation. Although the mechanisms by which an LT-IS patch exerts its enhancing effects need further study, the enhanced immune responses, ability to safely use potent adjuvants, and simplicity of LT-IS patch application address an important unmet need and provide a new immune enhancement strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号