首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杜远鹏  蒋恩顺  翟衡 《昆虫学报》2012,55(3):324-329
【目的】探讨不同抗性葡萄品种对葡萄根瘤蚜Daktulosphaira vitifolia Fitch侵染后的组织结构响应。【方法】以砧木140Ru (Vitis rupestris×V. berlandieri)和栽培品种赤霞珠Vitis vinifera cv. Cabernet Sauvignon离体三级根及140Ru盆栽苗为试材接种根瘤蚜卵, 接种两周后取刺吸位点组织作超薄切片并观察超微结构变化, 取盆栽140Ru不同时期根结测定多酚含量。【结果】超微结构显示, 砧木140Ru根系周皮层最外层细胞壁的厚度(1 031.25 nm)及周皮层细胞层数(6~7层)显著高于赤霞珠品种的周皮层细胞厚度(543.75 nm)及层数(3~4层), 140Ru根系韧皮部酚类物质含量比赤霞珠高出35%; 侵染后, 砧木140Ru周皮层细胞第3层以内的细胞壁加厚并积聚大量的多酚类物质, 140Ru葡萄新根被根瘤蚜侵染后多酚含量呈升高趋势, 在接种20 d时是对照的2.4倍; 赤霞珠粗根被根瘤蚜侵染后薄壁细胞中细胞质变浓, 出现大量淀粉粒, 线粒体及内质网数量增多。【结论】砧木140Ru的周皮层组织结构较赤霞珠不利于根瘤蚜口针穿刺, 被根瘤蚜侵染后发生了不利于根瘤蚜侵染取食的变化。  相似文献   

2.
Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that besides a number of ecological advantages to protecting tissues against desiccation, internal hydraulic redistribution of water is a mechanism consistent with extended root survivorship in dry soils.  相似文献   

3.
Field experiments were conducted to evaluate population densities and survival, developmental rate, and fecundity of grape phylloxera, Daktulosphaira vitifoliae (Fitch), as influenced by root attachment or detachment from mature, field-grown, Vitis vinifera L. grapevines through the growing season. Experiments were performed using artificial infestations of California biotype A grape phylloxera. Thirty-day bioassays on attached- and detached-roots were repeated monthly from May to September in 1997 (cultivar 'Carignane') and April to September in 1998 (cultivar 'Thompson Seedless'). The bioassays showed that attached roots had lower population densities than detached roots in all months of both years. Densities varied by month, tending to be higher in spring than in summer. Of the population parameters studied, survival was most influenced by attachment condition, being higher on detached than on attached roots by up to 25-fold. These results imply the importance of vine-related mortality factors to grape phylloxera population density. Influence of root attachment condition on developmental rate and fecundity was not uniform across bioassay months for either year; however, in the four out of 21 assays where there was a significant difference it favored detached roots by twofold. Fruit harvest resulted in higher survival in the July assay but not for assays in August and September; however, neither developmental rate nor fecundity was affected by harvest in any ofthe assays. We conclude that mortality rather than nutritional factors are most limiting for field populations on susceptible vines. This work suggests that detachment of roots as occurs with root girdling by root pathogens may increase grape phylloxera populations on infested, susceptible vines. These results imply that excised root bioassays over-estimate grape phylloxera virulence and underestimate rootstock resistance.  相似文献   

4.
The resistance to phylloxera is one of the most important properties of grapevine rootstock. The breeding and selection of rootstock varieties represents a biological method of fight against phylloxera. In this study altogether 59 rootstock hybrids originating from nine different populations were evaluated. Pedigrees of all populations involved Vitis cinerea Arnold introduced through the hybrid Bruci/(Vitis berlandieri Planch. × Vitis rupestris Scheele) × Vitis cinerea Arnold/ and the variety Börner. Pot experiments were performed in a glasshouse while those with excised root pieces in root bioassay took place in a laboratory. This combination showed to be a very good selection tool for rootstock breeding. In seven rootstock hybrids, it was found that the resistance to phylloxera gallicoles and radicicoles was very high. The highest number of resistant hybrids was found in Binova × Börner. The variety Börner showed to be the best gene source of phylloxera resistance and even in case of a simple crossing produced sufficient number of resistant progeny.  相似文献   

5.
Abstract: Vitis riparia and other rootstocks were used in excised root- and plantlet culture-bioassays to test the performance of Hungarian colonies of phylloxera. Phylloxera colonies from America and Germany were used as comparisons. The Hungarian colonies had a higher level of performance on V. riparia in contrast with the American and German colonies. Plantlet assays found the performance of a Hungarian strain on V. riparia equivalent to that on Vitis vinifera , AXR#1 and 41B root types. In contrast, the American colonies did not survive on V. riparia . Collections of Hungarian gallicole colonies from cultivated and escaped rootstock leaves were assayed using excised roots of the rootstock Teleki 5C. Results indicated that performance of phylloxera collected from feral rootstocks was higher than performance of colonies collected from cultivated rootstock leaves. Lastly, when the attached roots of field-grown V. riparia vines were damaged by girdling, phylloxera performance was much higher than on undamaged roots, suggesting cultural conditions can increase the risk of related vine damage. These laboratory and field results show that V. riparia is capable of supporting phylloxera on its roots. Escaped, feral vines may select for phylloxera with increased virulence on roots. This is of significance in regions such as Hungary where feral rootstock is common.  相似文献   

6.
7.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

8.
The short-term effects of cowpea aphids ( Aphis craccivora Koch) and pea aphids ( Acyrthosiphon pisum Harris), both Homoptera: Aphididae, on plant growth and respiration of excised, intact roots of cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona], broadbean ( Vicia faba L. cv. Aquadulce) and garden pea ( Pisum sativum L. cv. Victory Freezer) seedlings were investigated, but not all plant-aphid combinations were used. Plant and root mean relative growth rates were significantly reduced within 10 days in the infested plants. Rates of total root respiration were was also significantly reduced in all infested plants within 10 days, presumably because of the reduced availability of translocate to the roots. The contribution of the cytochrome pathway to root respiration was significantly greater in control than in infested plants. The activity and engagement of the alternative respiratory pathway was also greater in control plants, and was absent in infested plants after 10 days infestation in all cases but one. These data indicate that the roots of aphid-infested plants were more efficient, in terms of energy conversion, than their respective controls.  相似文献   

9.
Corrie AM  Hoffmann AA 《Heredity》2004,92(2):118-127
Patterns of variation at microsatellite loci suggest that root populations of the pest grape phylloxera (Daktulosphaira vitifoliae) are largely parthenogenetic in Australian vineyards. To investigate reproduction in leaf galling phylloxera and the association between these individuals and phylloxera on roots, we examined in detail genetic variation in phylloxera from a vineyard block. Some genotypes found on leaf galls within this block were not present on roots, whereas others spanned both zones. There was no evidence that genotypes on roots were the product of sexual reproduction in leaf galls. mtDNA variation was not associated with the location of the phylloxera clones. The spatial distribution of genotypes within a root population was further investigated by intensively sampling phylloxera from another vineyard block. Join-count spatial autocorrelation statistics were used to explore fine-scale spatial structure. Clones were nonrandomly distributed within the block and there was evidence that the distribution of clones followed rows. These findings suggest firstly that there is limited dispersal of root and leaf feeding phylloxera, and secondly that factors, other than vine host, are likely to be important and contribute to clonal structure within populations.  相似文献   

10.
The grape phylloxera, Daktulosphaira vitifoliae, is a viticultural pest that in the past has devastated vineyards worldwide, yet little is known about this insect's biology. The genetic structure of Australian populations of grape phylloxera and its mode of reproduction were studied following the development of four polymorphic microsatellite loci. Insects were collected from 28 vineyards, with a total of 361 insects included in the study. The majority of vineyards were infested by functionally parthenogenetic lineages of grape phylloxera that inhabit the root system and there was little support for the traditionally described holocyclic life cycle for this species. Clonal diversity was limited in all of the vineyard regions, with the exception of the Rutherglen region. A multiple founder scenario or occasional sex may contribute to diversity within the Rutherglen region. Leaf galling populations comprised classes distinct from the common genotypic classes identified on the roots, suggesting limited exchange between these groups. Implications for the management of D. vitifoliae are discussed.  相似文献   

11.
When an indigenous insect becomes a pest, comparisons of performance of pest and non-pest populations on crop plants and of genetic variation in that performance may provide insight into the evolution of pest populations. To measure such genetic variation, 8–15 clones of the grape phylloxera (Daktulosphaira vitifoliae Fitch) were collected from wild grapevines in each of 3 geographically isolated sites (populations) and from commercial vineyards in northern California. A complete life table was made for clonal replicates from populations collected from wild grapevines on each of two commercial grape cultivars, the susceptibleVitis vinifera (L.) cultivar Cabernet Sauvignon, and the phylloxera-resistant rootstock ‘AxR # 1’. Variation in mean performance on these two hosts was partitioned among clones within collection sites and among sites. Performance measures included an individual analog to the intrinsic rate of increase (r), age at first oviposition, fecundity in the first ten days of reproduction, total fecundity, and longevity. The overall performance of phylloxera from the wild grapevines on the resistant cultivar AxR # 1 was greater than or equal to that on the susceptible cultivar Cabernet Sauvignon. There was significant variation among clones within populations from wild grapes in the rate of increase on ‘AxR # 1’ and marginally significant clonal variation in some of the component paramters. There was no significant variation among clones within populations on ‘Cabernet Sauvignon’ and no significant differences between populations on either crop in any trait. In a second experiment we compared the relative performance of 15–17 clones from wild grapevines and from commercial vineyards when reared on ‘Cabernet Sauvignon’ and ‘AxR # 1’. Phylloxera from commercial vineyards had much higher overall performance on ‘Cabernet Sauvignon’ than did phylloxera from the wild grapevines. Phylloxera from the commercial vineyard also had higher performance on ‘Cabernet Sauvignon’ than on ‘AxR′ 1’ but the performance of the phylloxera from wild and commercial grapes did not differ on ‘AxR # 1’. Our results show that there is genetic variation in traits related to performance on a resistant rootstock within these indigenous non-pest populations of phylloxera, but not among them. The pattern of performance of pest and non-pest populations on two commercial cultivars suggests that current levels of phylloxera performance on crop cultivars are the result of adaptation to those cultivars which has occurred while phylloxera has been associated with viticulture. Implications of these results for understanding the recent adaptation of phylloxera to ‘AxR # 1’ in California are also discussed.  相似文献   

12.
Below-ground carbon allocation represents a substantial fraction of net photosynthesis in plants, yet timing of below-ground allocation and endogenous and exogenous factors controlling it are poorly understood. Minirhizotron techniques were used to examine root populations of Vitis labruscana Bailey cv. Concord under two levels of dormant-season canopy removal and irrigation. Root production, pigmentation, death and disappearance to a depth of 110 cm were determined over two wet and two dry years (1997-2000). There was continual root production and senescence, with peak root production rates occurring by midseason. Later in the season, when reproductive demands for carbon were highest and physical conditions limiting, few roots were produced, especially in dry years in nonirrigated vines. Root production under minimal canopy pruning was generally greater and occurred several weeks earlier than root production under heavy pruning, corresponding to earlier canopy development. Initial root production occurred in shallow soils, likely due to temperatures at shallow depths being warmer early in the season. Our study showed intricate relationships between internal carbon demands and environmental conditions regulating root allocation.  相似文献   

13.
* Linkages between plant growth rate and root responses to soil moisture heterogeneity were investigated. * Root dynamics were studied using genetically identical shoots (Vitis vinifera cv. Merlot) with genetically distinct root systems that promote higher (HSV) and lower (LSV) shoot growth rates (1103P and 101-14 Mgt, respectively). Three quantities of irrigation replenished different amounts of evapotranspiration (0, 40 and 100%ET(c)) in a California vineyard. * Roots of HSV vines exhibited more plasticity, as indicated by greater preferential growth in irrigated soil during the summer, and a larger shift in root diameter with a change in soil moisture than LSV vines. Higher tolerance of low soil moisture was not observed in LSV roots--root survivorship was similar for the two rootstocks. LSV vines produced a large fraction of its roots during the winter months and increased root density over the study, while HSV vines produced roots mainly in summer and only exhibited a high initial peak in root biomass in the first year. * These results demonstrated that a plant of higher vigor has greater morphological plasticity in response to lateral heterogeneity in soil moisture but similar tolerance to moisture stress as indicated by root survivorship in dry soil.  相似文献   

14.

Aims

Plant tolerance to herbivory has often been linked to plant growth rate, with faster growing plants that present high tissue turnover rates expected to be more tolerant than slower-growing plants. We tested whether this relationship also holds for rootstock growth rate and tolerance to apple replant disease (ARD).

Methods

An ARD susceptible rootstock, M.26 and ARD tolerant rootstock, CG.6210 were grown in soil from an apple replant site (FS) and in pasteurized soil (PS) from the same site. Total below ground biomass production was determined by harvesting a subset of plants per soil treatment and rootstock at 11, 17, and 23 weeks after planting. Root samples were collected prior to each harvesting date to determine root respiration and total carbon (C) and nitrogen (N) content. Root dynamics were tracked during the growing season by digitally photographing root observation windows.

Results

Total root biomass, first and second order roots, and second-to-first order root ratio were higher in CG.6210 than in M.26 in both soil treatments. Roots of CG.6210 were thinner and had lower N concentration than those of M.26. Roots of M.26 had longer lifespans than those of CG.6210, and the mortality risk of M.26 roots was 56 % that of CG.6210 roots.

Conclusion

Our study indicates that rootstocks with faster growing root systems can tolerate ARD infection by investing fewer resources in individual root construction that can be shed more readily.  相似文献   

15.
The effect of Heterodera avenae infestation on early seminal and lateral root growth was examined in four oat genotypes differing in tolerance to H. avenae. Recently emerged seminal roots were inoculated with a range of H. avenae larval densities, then transferred a hydroponic system to remove the effect of later nematode penetration on root development. Intolerance to H. avenae was assessed in terms of impairment of seminal root extension resulting in fewer primary lateral roots emerging from the seminal root below the zone of juvenile penetration. Tolerant plants infested with H. avenae had longer lateral root systems than infested intolerant plants. The decline in lateral root growth below the penetration zone was partly offset by increased growth above. This did not contribute to tolerance, however, as there were no differences between cultivars for this feature. Nematodes induced earlier nodal root emergence in all cultivars. Nodal root development was most advanced on the most tolerant cultivar.  相似文献   

16.
Suspension cultures were made from the vegetative tissues ofanthers of the grape rootstock Vitis rupestris Scheele cv. RupestrisSt George. Cell lines and somatic embryos were isolated whichgrew in agitated liquid media containing up to 150 mM NaCl.Exposure to NaCl (50–100 mM) promoted outgrowth of secondarysomatic embryos but inhibited development of plantlets. Withinsomatic embryos the cotyledon and hypocotyl tissues were moretolerant of NaCl than root tissues. Elongation of the radiclein embryos in the presence of NaCl (50 mM) was associated withnecrosis and death of root tissue but hypocotyls and cotyledonsremained viable and continued to produce callus and secondarysomatic embryos. The usefulness of the cell culture approachin selecting for salt tolerance is questioned.  相似文献   

17.
Developmental patterns of lateral roots and their vascular differentiationwere investigated for Vitis vinifera L. cv. Shiraz to assessthe likely contribution of lateral roots to total water uptakeof plants subjected to different irrigation regimes. Correlationanalyses showed a significant positive correlation between mainroot diameter and the diameter of first order lateral rootsof well-watered plants, but in water-stressed plants the twowere not significantly correlated. The correlations betweendiameters of first order lateral roots and the diameters ofmain roots were greater than correlations between the lengthsof first order laterals and the diameters of main roots. Thesuberised surface area of well-watered main roots increasedfrom 4% of total surface area at 0·25 cm to 100% at 10cm from the tip, whereas that of stressed plants increased from15% at 0·25 cm to 100% at 5 cm from the tip. In all treatmentsthe highest linear density of first order laterals was about7 laterals cm-1 of main root. More than 50% of first order lateralshad diameters less than 0·05 cm, and more than 90% ofthem had lengths less than 5 cm. Calculations of axial resistancesbased on xylem diameter measurements suggest that the axialresistances of root segments may not be uniform along rootsas is often assumed in models of water uptake. Water flow intothe main roots via the lateral root pathway is likely to bemuch smaller than that via the direct radial flow pathway asonly about 1% of surface area of main roots is directly occupiedby lateral roots, leaving the other 99% of main root surfacearea available for the direct radial flow pathway.Copyright1994, 1999 Academic Press Axial resistance, grapevine (Vitis vinifera L. cv. Shiraz) roots, root diameter, root length, xylem vessels  相似文献   

18.
Grapevine rootstock cultivar ‘B?rner’ is a hybrid of Vitis riparia and Vitis cinerea Arnold that shows high resistance to phylloxera (Daktulosphaira vitifoliae Fitch). To localize the determinants of phylloxera root resistance, the susceptible grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) was crossed to ‘B?rner’. Genetic framework maps were built from the progeny. 235 microsatellite markers were placed on the integrated parental map. They cover 1,155.98 cM on 19 linkage groups with an average marker distance of 4.8 cM. Phylloxera resistance was scored by counting nodosities after inoculation of the root system. Progeny plants were triplicated and experimentally infected in 2 years. A scan of the genetic maps indicated a quantitative trait locus on linkage group 13. This region was targeted by six microsatellite-type markers newly developed from the V. vinifera model genome sequence. Two of these appear closely linked to the trait, and can be useful for marker-assisted breeding.  相似文献   

19.
Four Concord grape vineyards in Georgia were examined to determine the levels of infestation by the grape root borer, Vitacea polistiformis. Additionally, the soil at each vineyard site was assayed to determine relative levels of entomophilic rhabditoid nematode activity. An inverse correlation was shown to exist between severity of V. polistiformis infestation and activity of the entomophilic rhabditoid nematode fauna in the vineyard soils. Laboratory and field bioassays determined the susceptibility of first-instar grape root borer to the entomophilic rhabditoid nematode, Neoaplectana carpocapsae. This insect-nematode interaction was posited as a mechanism of natural control of grape root borer populations. Augmentation of entomophilic rhabditoid nematode populations during the critical period of oviposition and eclosion is suggested as a preventative control technique for V. polistiformis.  相似文献   

20.
Pruning or total removal of in vitro formed roots of grape (Vitis vinifera L.) plantlets at planting offered considerable ease and time economy compared to control plantlets with intact roots. The ex vitro establishment was unaffected by the practice with 90% or higher establishment in each treatment. When observed at 4 weeks from planting, growth was slightly affected by root pruning and significantly by root removal. However, both these treatments showed better adventitious root regeneration at the base compared to control plants, which showed elongation of in vitro formed roots with fewer new roots. Root pruning and root removal treatments reduced the influence of the number of in vitro formed roots on vigour of ex vitro plants since the number of new roots formed was independent of the roots initially present. Consequently, these plants showed more uniformity compared to control plants. With a better root system, root pruned plants showed faster subsequent growth. Root pruning at planting is recommended for easier handling and more uniform plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号