首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurturin (NRTN), a member of the GDNF family of neurotrophic factors, promotes the survival and function of several neuronal populations in the peripheral and central nervous system. Recent gene ablation studies have shown that NRTN is a neurotrophic factor for many cranial parasympathetic and enteric neurons, whereas its significance for the sacral parasympathetic neurons has not been studied. NRTN signals via a receptor complex composed of the high-affinity binding receptor component GFRalpha2 and the transmembrane tyrosine kinase Ret. The aim of this study was to determine whether NRTN could be an endogenous trophic factor for penis-projecting parasympathetic neurons. NRTN mRNA was expressed in smooth muscle of penile blood vessels and corpus cavernosum in adult rat as well as in several intrapelvic organs, whereas GFRalpha2 and Ret mRNAs were expressed in virtually all cell bodies of the penile neurons, originating in the major pelvic ganglia. (125)I-NRTN injected into the shaft of the penis was retrogradely transported into the major pelvic and dorsal root ganglia. Mice lacking the GFRalpha2 receptor component had significantly less nitric oxide synthase-containing nerve fibers in the dorsal penile and cavernous nerves. In conclusion, these data suggest that NRTN acts as a target-derived survival and/or neuritogenic factor for penile erection-inducing postganglionic neurons.  相似文献   

2.
Ledda F  Paratcha G  Ibáñez CF 《Neuron》2002,36(3):387-401
Immobilized and diffusible molecular cues regulate axon guidance during development. GFRalpha1, a GPI-anchored receptor for GDNF, is expressed as both membrane bound and secreted forms by accessory nerve cells and peripheral targets of developing sensory and sympathetic neurons during the period of target innervation. A relative deficit of GFRalpha1 in developing axons allows exogenous GFRalpha1 to capture GDNF and present it for recognition by axonal c-Ret receptors. Exogenous GFRalpha1 potentiates neurite outgrowth and acts as a long-range directional cue by creating positional information for c-Ret-expressing axons in the presence of a uniform concentration of GDNF. Soluble GFRalpha1 prolongs GDNF-mediated activation of cyclin-dependent kinase 5 (Cdk5), an event required for GFRalpha1-induced neurite outgrowth and axon guidance. Together with GDNF, target-derived GFRalpha1 can function in a non-cell-autonomous fashion as a chemoattractant cue with outgrowth promoting activity for peripheral neurons.  相似文献   

3.
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN) are neurotrophic factors for parasympathetic neurons including ciliary ganglion (CG) neurons. Recently, we have shown that survival and signaling mediated by GDNF in CG neurons essentially requires transforming growth factor β (TGFβ). We have provided evidence that TGFβ regulates the availability of the glycosyl phosphatidylinositol (GPI)-anchored GDNF receptor alpha 1 (GFRα1) by promoting the recruitment of the receptor to the plasma membrane. We report now that in addition to GDNF, NRTN, but not persephin (PSPN) or artemin (ARTN), is able to promote survival of CG neurons. Interestingly, in contrast to GDNF, NRTN is not dependent on cooperation with TGFβ, but efficiently promotes neuronal survival and intracellular signaling in the absence of TGFβ. Additional treatment with TGFβ does not further increase the NRTN response. Both NRTN and GDNF exclusively bind to and activate their cognate receptors, GFRα2 and GFRα1, respectively, as shown by the use of receptor-specific neutralizing antibodies. Immunocytochemical staining for the two receptors on the surface of CG neurons reveals that, in contrast to the effect on GFRα1, TGFβ is not required for recruitment of GFRα2 to the plasma membrane. Moreover, binding of radioactively labeled GDNF but not NRTN is increased upon treatment of CG neurons with TGFβ. Disruption of TGFβ signaling does interfere with GDNF-, but not NRTN-mediated signaling and survival. We propose a model taking into account data from GFRα1 crystallization and ontogenetic development of the CG that may explain the differences in TGFβ-dependence of GDNF and NRTN.  相似文献   

4.
Artemin (ARTN) is a member of the GDNF family of ligands and signals through the Ret/GFRalpha3 receptor complex. Characterization of ARTN- and GFRalpha3-deficient mice revealed similar abnormalities in the migration and axonal projection pattern of the entire sympathetic nervous system. This resulted in abnormal innervation of target tissues and consequent cell death due to deficiencies of target-derived neurotrophic support. ARTN is expressed along blood vessels and in cells nearby to sympathetic axonal projections. In the developing vasculature, ARTN is expressed in smooth muscle cells of the vessels, and it acts as a guidance factor that encourages sympathetic fibers to follow blood vessels as they project toward their final target tissues. The chemoattractive properties of ARTN were confirmed by the demonstration that sympathetic neuroblasts migrate and project axons toward ARTN-soaked beads implanted into mouse embryos.  相似文献   

5.
The glial cell line-derived neurotrophic factor (GDNF) family consists of the four ligands GDNF, neurturin (NRTN), artemin and persephin, which bind to the four co-receptors GDNF family receptor alpha1-4 and control through the activation of the receptor tyrosin kinase Ret several developmental processes. The purpose of this study was to analyse the expression and the influence of NRTN in the developing retina. We used retinospheres, a three-dimensional model system of the developing chicken retina. The expression of NRTN and the GDNF family receptor alpha 2 increased during development. Furthermore, expression was comparable in retinae and retinospheres. Analysis of signalling pathways influenced by NRTN in retinospheres showed activation of phosphatidylinositol-3 kinase and mitogen-activated protein kinase (MAPK). Activation of MAPK could be localised in cells of the innermost rows of the inner nuclear layer which were predominantly acetylcholinesterase-positive cells. Exogenous application of NRTN increased the amount of acetylcholinesterase-positive cells within the retinospheres at late culture stages. Additionally, we could show that Müller glia cells did not express the GFRalpha2 receptor and were probably not involved in NRTN signalling. Therefore, we conclude that NRTN directly participates in regulatory processes concerning the differentiation of acetylcholinesterase-positive cells in the chicken retina.  相似文献   

6.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   

7.
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target-derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-4), and glial cell line-derived neurotrophic factor (GDNF) may be target-derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio-iodinated BDNF, NT-3, NT-4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT-3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT-3, and NT-4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75(NTR) and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target.  相似文献   

8.
To clarify whether glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFRalpha1), the glycosylphosphatidylinositol (GPI)-linked coreceptor for GDNF, is also a functional coreceptor for artemin (ART), we have studied receptor binding, signaling, and neuronal survival. In cell-free binding studies, GFRalpha1-Ig displayed strong preferential binding to GDNF, though in the presence of soluble RET, weak binding to ART could also be detected. However, using GFRalpha1-transfected NB41A3 cells, ART showed no detectable competition against the binding of (125)I-labeled GDNF. Moreover, ART failed to induce phosphorylation of extracellular signal-related kinase (ERK) and Akt in these cells and was >10(4)-fold less potent than GDNF in stimulating RET phosphorylation. When rat primary dorsal root ganglion (DRG) neurons were used, only the survival promoting activity of GDNF and not that of ART was blocked by an anti-GFRalpha1 antibody. These results indicate that although ART can interact weakly with soluble GFRalpha1 constructs under certain circumstances in vitro, in cell-based functional assays GFRalpha1 is at least 10 000-fold selective for GDNF over ART. The extremely high selectivity of GFRalpha1 for GDNF over ART and the low reactivity of ART for this receptor suggest that GFRalpha1 is not likely to be a functional coreceptor for ART in vivo.  相似文献   

9.
10.
Crone SA  Lee KF 《Neuron》2002,36(3):333-335
Developing axons are guided to their targets by chemoattractive and chemorepulsive ligands. Ledda et al., in this issue of Neuron, demonstrate that the target-derived receptor glial cell line-derived neurotrophic factor receptor alpha1 (GFRalpha1) can also act in trans as an axon guidance molecule for neurons.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

12.
Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d‐tubocurarine (dTC) induces an increase in branching measured by counting neurofilament‐positive voxels (NF‐VU) in the iris between E14‐17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro‐β‐erythroidin and α‐methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF‐induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF‐VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF‐VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

13.
We have identified zebrafish orthologues of glial cell line-derived neurotrophic factor (GDNF) and the ligand-binding component of its receptor GFRalpha1. We examined the mRNA expression pattern of these genes in the developing spinal cord primary motor neurons (PMN), kidney, and enteric nervous systems (ENS) and have identified areas of correlated expression of the ligand and the receptor that suggest functional significance. Many aspects of zebrafish GDNF expression appear conserved with those reported in mouse, rat, and avian systems. In the zebrafish PMN, GFRalpha1 is only expressed in the CaP motor neuron while GDNF is expressed in the ventral somitic muscle that it innervates. To test the functional significance of this correlated expression pattern, we ectopically overexpressed GDNF in somitic muscle during the period of motor axon outgrowth and found specific perturbations in the pattern of CaP axon growth. We also depleted GDNF protein in zebrafish embryos using morpholino antisense oligos and found that GDNF protein is critical for the development of the zebrafish ENS but appears dispensable for the development of the kidney and PMN.  相似文献   

14.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

15.
Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization. Intrastriatal injection of 6-hydroxydopamine (6-OHDA) transiently increased c-Ret and GFRalpha1 mRNA levels in the substantia nigra pars compacta at 1 day postlesion. At later time points, 3 and 6 days, the expression of c-Ret and GFRalpha1 was downregulated. GFRalpha2 expression was differentially regulated, as it decreased only 6 days after 6-OHDA injection. Triple-labeling studies, using in situ hybridization for the GDNF family receptors and immunohistochemistry for neuronal or glial cell markers, showed that changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta were localized to neurons. In conclusion, our results show that nigral neurons differentially regulate the expression of GDNF family receptors as a transient and compensatory response to 6-OHDA lesion.  相似文献   

16.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   

17.
The developmental expression of macroscopic Ca(2+)-activated K(+) currents in chick ciliary ganglion neurons is dependent on an avian ortholog of TGFbeta1, known as TGFbeta4, secreted from target tissues in the eye. Here we report that a different isoform, TGFbeta3, is also expressed in a target tissue of ciliary ganglion neurons. Application of TGFbeta3 inhibits the functional expression of whole-cell Ca(2+)-activated K(+) currents evoked by 12 hour treatment with either TGFbeta1 or beta-neuregulin-1 in ciliary ganglion neurons developing in vitro. TGFbeta3 had no effect on voltage-activated Ca(2+) currents. A neutralizing antiserum specific for TGFbeta3 potentiates stimulation of Ca(2+)-activated K(+) currents evoked by a target tissue (iris) extract in cultured ciliary ganglion neurons, indicating that TGFbeta3 is an inhibitory component of these extracts. Intraocular injection of TGFbeta3 causes a modest but significant inhibition of the expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo. Further, intraocular injection of a TGFbeta3-neutralizing antiserum stimulates expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo, indicating that endogenous TGFbeta3 regulates the functional expression of this current. The normal developmental expression of functional Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo is therefore regulated by two different target-derived isoforms of TGFbeta, which produce opposing effects on the electrophysiological differentiation of these neurons.  相似文献   

18.
We have previously shown that the neurotrophic effect of glial cell line-derived neurotrophic factor (GDNF) in vitro and in vivo requires the presence of transforming growth factor (TGF)beta. Using primary neurons (chick E8 ciliary) we show that the combination of GDNF plus TGFbeta promotes survival, whereas the single factors do not. This cooperative effect is inhibited by blocking the extracellular signal-regulated kinase (ERK)/MAPK pathway, but not by interfering with the PI3 kinase signaling cascade. Although there is no functional GDNF signaling in the absence of TGFbeta, pretreatment with TGFbeta confers GDNF responsiveness to the cells. This is not due to upregulation of GDNF receptors mRNA and protein, but to TGFbeta-induced recruitment of the glycosyl-phosphatidylinositol-anchored GDNF receptor (GFR)alpha1 to the plasma membrane. This is supported by the fact that GDNF in the presence of a soluble GFRalpha1 can promote survival in the absence of TGFbeta. Our data suggest that TGFbeta is involved in GFRalpha1 membrane translocation, thereby permitting GDNF signaling and neurotrophic effects.  相似文献   

19.
Two of the glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), namely GDNF and neurturin (NRTN), are essential neurotropic factors for enteric nerve cells. Signal transduction is mediated by a receptor complex composed of GDNF family receptor alpha 1 (GFRα1) for GDNF or GFRα2 for NRTN, together with the tyrosine kinase receptor RET (rearranged during transfection). As both factors and their receptors are crucial for enteric neuron survival, we assess the site-specific gene expression of these GFLs and their corresponding receptors in human adult colon. Full-thickness colonic specimens were obtained after partial colectomy for non-obstructing colorectal carcinoma. Samples were processed for immunohistochemistry and co-localization studies. Site-specific gene expression was determined by real-time quantitative polymerase chain reaction in enteric ganglia and in circular and longitudinal muscle harvested by microdissection. Protein expression of the receptors was mainly localized in the myenteric and submucosal plexus. Dual-label immunohistochemistry with PGP 9.5 as a pan-neuronal marker detected immunoreactivity of the receptors in neuronal somata and ganglionic neuropil. RET immunoreactivity co-localized with neuronal GFRα1 and GFRα2 signals. The dominant source of receptor mRNA expression was in myenteric ganglia, whereas both GFLs showed higher expression in smooth muscle layers. The distribution and expression pattern of GDNF and NRTN and their corresponding receptors in the human adult enteric nervous system indicate a role of both GFLs not only in development but also in the maintenance of neurons in adulthood. The data also provide a basis for the assessment of disturbed signaling components of the GDNF and NRTN system in enteric neuropathies underlying disorders of gastrointestinal motility.  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neurodevelopment and survival of midbrain dopaminergic and spinal motor neurons in vitro and in vivo. The biological actions of GDNF are mediated by a two-receptor complex consisting of a glycosylphosphatidylinositol-linked cell surface molecule, the GDNF family receptor alpha1 (GFRalpha1), and receptor protein tyrosine kinase Ret. Although structural analysis of GDNF has been extensively examined, less is known about the structural basis of GFRalpha1 function. In this study, based on evolutionary trace method and relative solvent accessibility prediction of residues, a set of trace residues that are solvent-accessible was selected for site-directed mutagenesis. A series of GFRalpha1 mutations was made, and PC12 cell lines stably expressing different GFRalpha1 mutants were generated. According to the survival and differentiation responses of these stable PC12 cells upon GDNF stimulation and the GDNF-GFRalpha1-Ret interaction assay, residues 152NN153, Arg259, and 316SNS318 in the GFRalpha1 central region were found to be critical for GFRalpha1 binding to GDNF and eliciting downstream signal transduction. The single mutation R259A in the GFRalpha1 molecule simultaneously lost its binding ability to GDNF and Ret. However N152A/N153A or S316A/N317A/S318A mutation in the GFRalpha1 molecule still retained the ability to bind with Ret. These findings suggest that distinct structural elements in GFRalpha1 may be involved in binding to GDNF and Ret.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号