首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulse radiolysis-kinetic spectrometry has been used to investigate the reaction of hydrated electrons with ferricytochrome c in dilute aqueous solution at pH 6.5–7.0. Time resolutions from 2·10?7 to 1 s were employed. Transient spectra from 320 to 580 nm were characterized with a wavelength resolution of ±0.5 nm. 1 In neutral salt-free solution, k(ferricytochrome c+e?aq)=(6.0±0.9)·1010 M?1·s?1 and k(ferricytochrome c+H)=(1.2±0.2)·1010 M?1·s?1. The reaction of ferricytochrome c with hydrated electrons is sensitive to ionic strength; in 0.1 M NaClO4, k(ferricytochrome c+e?aq)=(2.4±0.4)·1010 M?1·s?1. In contrast, k(ferricytochrome c+H) is insensitive to ionic strength. Time resolution of three spectral stages has been accomplished. The primary spectrum is the first observable spectrum detectable after irradiation and is formed in a second-order process. Its rate of formation is indisting-uishable from the rate of disappearance of the electron spectrum. The secondary spectrum is generated in a true first order intramolecular process, k(p→s)=(1.2±0.1)·105 s?1. The tertiary spectrum is also generated in a true first-order process, k(s→t)=(1.3±0.2)·102 s?1. The specific rates of both transformations are independent of the wavelength of measurement. The tertiary spectrum, observable 50 ms after initial reaction and remaining unchanged thereafter for at least 1 s, shows that relaxed ferrocytochrome c is the only detectable product. This product is not autoxidizable, as expected for native reduced enzyme. It is more probable that the intramolecular changes responsible for the p→s and s→t spectral transformations involve the influence of conformational relaxation of ferrocytochrome c upon electronic energy states then that they are intramolecular transmission of reducing equivalents from primary sites of electron attachment.  相似文献   

2.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

3.
The reduction of spinach ferredoxin by the CO?2 radical and the hydrated electron (e?aq) has been studied by pulse radiolysis in the pH range between 5.05 and 9.67. The reduction of oxidized spinach ferredoxin by both CO?2 and e?aq was found to be essentially quantitative. The CO?2 radical reduces spinach ferredoxin by a single second-order process at a rate k5 = (6.2 ± 0.6) · 107 M?1 · s?1. Reduction by e?aq follows a biphasic pathway. The first phase obeys second-order kinetics for the reduction of the cluster, kapp = (9.4 ± 0.3) · 109 M?1 · s?1. The second phase follows an intramolecular first-order reaction kB = (8.3 ± 1.7) · 102 s?1 which is observed as a further reduction of the active site. Spectral changes accompanying the reduction of oxidized spinach ferredoxin in the ultraviolet and visible range are discussed.  相似文献   

4.
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5–8) · 108 M?1 · s?1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 · 105 M?1 · s?1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 μM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 · 108 M?1 · s?1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.  相似文献   

5.
The rates of formation and dissociation of concanavalin A with some 4-methylumbelliferyl and p-nitrophenyl derivatives of α- and β-D-mannopyranosides and glucopyranosides were measured by fluorescence and spectral stopped-flow methods. All process examined were uniphasic. The second-order formation rate constants varied only from 6.8 · 104 to 12.8 · 104 M?. s?1, whereas the first-order dissociation rate constants ranged from 4.1. to 220 s?1, all at ph 5.0, I = 0.3 M, and 25°C. Dissociation rates thus controlled the value of binding constant. The effect of temperature on these reactions was examined, from which enthalpies and entropies of activation and of reaction could be calculated. The effects of pH at 25°C on the reaction rates of 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside with concanavalin A were examined. The value of the binding constant Kap (derived from the kinetics) at any pH could be related to the intrinsic binding constant K by the expression Kap = KaK(Ka + [H+])?1. The values of Ka, the ionization constant of the protein segment responsive to sugar binding, were 3 · 10?4 M and 1 · 10?4 M for 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside, respectively. The binding constant of p-nitrophenyl α-D-mannopyranoside is surprisingly much less sensitive to a pH change from 5.0 to 2.7. Ionic strength had little effect on the binding characteristics of 4-methylumbelliferyl α-D-mannopyranoside to concanavalin A at pH 5.2 and 25°C.  相似文献   

6.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24°C was 2 · 109 M?1 · s?1, but this varied with pH, being 5.1 · 108 M?1 · s?1 at pH 5.2 and 4.3 · 109 M?1 · s?1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

7.
Hiroshi Seki  Masashi Imamura 《BBA》1981,635(1):81-89
The reactions of ferrocytochrome c with Br?2, (SCN)?2, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on γ-irradiation as well as the rate of change of absorbance upon pulse irradiation.Ferrocytochrome c is oxidized to ferricytochrome c by Br?2, (SCN)?2 or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 · 108 M?1 · s?1, 7.9 · 108 M?1 · s?1, 1.3 · 109 M?1 · s?1 for the oxidation by Br?2, (SCN)?2 and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by Br?2 and (SCN)?2. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical.Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k > 1 · 1010 M?1 · s?1), but with a very small efficiency (5%).  相似文献   

8.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

9.
A reaction of the superoxide radical with tetrapyrroles   总被引:1,自引:0,他引:1  
Bilirubin and biliverdin were bleached during exposure to the aerobic xanthine oxidase reaction. Enzymic scavenging of O2?, by Superoxide dismutase, inhibited, whereas enzymic scavenging of H2O2, by catalase, did not. Increasing the rate of production of O2? without increasing the turnover rate of xanthine oxidase, by increasing pO2, accelerated the bleaching of the biliverdin. Moreover, a scavenger of OH·, such as benzoate, or an inactivating chelating agent for iron, such as diethylenetriamine pentaacetate or desferrioxamine mesylate, did not inhibit. It follows that O2? can directly attack these tetrapyrroles. Kinetic competition between Superoxide dismutase and bilirubin yielded a value for kbilirubin, O2? = 2.3 × 104 M?1s?1 at pH 8.3 and at 23 °C. A similar experiment for biliverdin yielded a value for kbilirubin, O2? = 7 × 104 M?1s?1.  相似文献   

10.
Mark A. Jensen  Philip J. Elving 《BBA》1984,764(3):310-315
The rate constant, kd, for the dimerization of the free radical (NAD·), produced on the initial one-electron reduction of NAD+, was measured by double potential-step chronoamperometry, fast-scan cyclic voltammetry (cathodic-anodic peak current ratio) and slow-scan cyclic voltammetry (peak potential shift) for a medium in which neither NAD+ nor its reduction products are adsorbed at the solution/electrode interface. All three methods give concordant values of kd (approx. 3·107 M?1·s?1), which are in reasonable accord with the values determined by pulse radiolysis but are considerably greater than values previously determined electrochemically. For the NAD+/NAD· couple, the heterogeneous rate constant (ks,h) exceeds 1 cm·s?1 at 25°C and the formal potential (E0c) vs. sce is ? 1.155 V at 25°C and ? 1.149 V at 1°C at pH 9.1, with an uncertainty of about ±0.005 V.  相似文献   

11.
Two different peptides have been purified from human liver, similar to those previously reported (Schoenenberger, G.A., and Wacker, W.E.C. (1966) Biochemistry 5, 1375–1379) to be present in human urine, which may serve as metabolic regulators of lactate dehydrogenase (EC 1.1 1.27) isoenzymes (LDH-M4 = muscle type; LDH-H4 = heart type). By trichloroacetic acid precipitation, ultrafiltration, Sephadex G-25 and Bio-Gel P-2 columns, affinity chromatography on immobilized LDH-isozymes and HPLC two peptides which differed with respect to molecular weight, retention on the affinity columns and amino acid composition were isolated. No effect was observed when native, tetrameric lactate dehydrogenase was incubated with these peptides. However, when lactate dehydrogenase was dissociated to monomers at low pH and allowed to reassociate by adjusting the pH to 7.5 complete inhibition of the reactivation occurred when the inhibitors were incubated together with respective reassociating monomeric isozymes. The two peptides showed no cross-specificity, i.e. each peptide exhibited inhibitory activity only on one of the two isozymes LDH-M4 or LDH-H4. From the amino acid analyses, gel-filtration and PAGE + SDS, molecular weight of 1800 for the M4 and ≈2700 for the H4 inhibitor were calculated. An apparent Ki of ≈3 × 10?5 mM for the H4 and ≈7 × 10?5 mM for the H4 inhibitor was estimated. The interaction of the inhibitors with the enzyme system showed strong cooperativity with Hill coefficients of 2.9 (LDH-M4-specific) and 2.4 (LDH-H4-specific). Mathematical modelling of the reassociation and reactivation of lactate dehydrogenase and its specific inhibition by the peptides led to the conclusion that the peptides reacts with monomers, dimers or a transition state during the tetramerisation process. k1 for the dimerisation step of M4 = 2.0 × 105 M?1 · s?1 and of H4 = 8.2 × 104 M?1 · s?1; k2 for the tetramerisation step of M4 = 2.8 × 105 M?1 · s?1 and of H4 = 1.2 × 105 · M?1 · s?1, were calculated, the second step still being the faster one.  相似文献   

12.
Pulse radiolytic studies of α-tocopherol (αTH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O2−, N2−, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A· and B·, were observed. The first, A·, was obtained under N2 and results from aTH reaction with solvated electron (kaTH+csolv = 3.4 × 108 mol−1 liter s−1) and with H3C-ĊH-OH, (R·) (kaTH + R· = 5 × 105 mol−1 liter s−1). B·, observed under O2, is produced by αTH reaction with RO2 peroxyl radicals (kaTH + RO2. = 9.5 × 104 mol−1 liter s−1).  相似文献   

13.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

14.
A laccase from the culture filtrate of Phellinus linteus MTCC-1175 has been purified to homogeneity. The method involved concentration of the culture filtrate by ammonium sulphate precipitation and an anion exchange chromatography on DEAE-cellulose. The SDS-PAGE and native-PAGE gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 70 kDa. Using 2.6-dimethoxyphenol, 2.2′[azino-bis-(3-ethylbonzthiazoline-6-sulphonic acid) diammonium salt] (ABTS) and 4-hydroxy-3,5-dimethoxybenzaldehyde azine as the substrates, the K m, k cat and k cat/K m values of the laccase were found to be 160 μM, 6.85 s?1, 4.28 × 104 M?1 s?1, 42 μM, 6.85 s?1, 16.3 × 104 M?1 s?1 and 92 μM, 6.85 s?1, 7.44 × 104 M?1 s?1, respectively. The pH and the temperature optima of the P. linteus MTCC-1175 laccase were 5.0 and 45°C, respectively. The activation energy for thermal denaturation of the enzyme was 38.20 kJ/mole/K. The enzyme was the most stable at pH 5.0 after 1 h reaction. In the presence of ABTS as the mediator, the enzyme transformed toluene, 3-nitrotoluene and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde and 4-chlorobenzaldehyde, respectively.  相似文献   

15.
Tissue kallikrein may play a role in processing precursor polypeptide hormones. We investigated whether hydrolysis of natural enkephalin precursors, peptide F and bovine adrenal medulla docosapeptide (BAM-22P), by hog pancreatic kallikrein is consistent with this concept. Incubation of peptide F with this tissue kallikrein resulted in the release of Met5-enkephalin and Met5-Lys6-enkephalin. Met5-Lys6-enkephalin was the main peptide released, indicating that the major cleavage site was between two lysine residues. At 37°C and pH 8.5, the KM values for formation of Met5-enkephalin and Met5-Lys6-enkephalin were 129 and 191 μM, respectively. Corresponding kcat values were 0.001 and 0.03 s−1 and kcat/KM ratios were 8 and 1.6·102 M−1 · s−1, respectively. Cleavage of peptide F at acidic pH (5.5) was negligible. When BAM-22P was used as a substrate, Met5-Arg6-enkephalin was released, thus indicating cleavage between two arginine residues. At pH 8.5, KM was 64 μM, kcat was 4.5 s−1, and the kcat/KM ratio was 7 · 104 M−1 · s−1. At 5.5, the pH of the secretory granules, KM, kcat and kcat/KM were 184 μM, 1.9 s−1 and 104 M−1 · s−1, respectively. It is unlikely that peptide F could be a substrate for kallikrein in vivo; however, tissue kallikrein could aid in processing proenkephalin precursors such as BAM-22P by cleaving Arg-Arg peptide bonds.  相似文献   

16.
The kinetic behaviour of intrinsic factor-vitamin B12 binding has been examined under varying conditions using an albuminised charcoal separation technique. The overall reaction obeys second order rate laws. The intrinsic factor considered alone obeys first order laws; the velocity of reaction of vitamin B12 is too fast for measurement by the technique described but by deduction obeys first order laws. Rate constants as three temperatures, (k2 at 25°C=1.56·108·mole?1·s?1) the activation energy (E=12.7 kJ·mole?1) and Arrhenius constant (A=2.7·1010 1·mole?1·s?1 have been calculated. There is the possibility of diffusion control of the reaction in which case the E and A values are invalid. The effect of pH on the reaction has been studied and the results discussed in relation to the pH studies of other workers whose results show disagreement. Albumin coated charcoal was shown to discriminate between intrinsic factor-vitamin B12 and free vitamn B12 over a wide pH range. The apparent under-estimation of intrinsic factor in dilute solution was shown to be due to adsorption of the intrinsic factor to plastic tubes.  相似文献   

17.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000.In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10?7 or 2 · 10?7, respectively. The fluorescence emission (λmax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with K1 = 2.4 · 104 M?1 · s?1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with k?1 = 3 · 10?3 s?1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed.The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another.The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 106 M?1 · s?1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

18.
The lactoperoxidase-catalyzed transformations of penta-, 2,3,4,6,-tetra-, 2,4,6,-tri, 2,4,-di- and 4-monochlorophenol were followed spectrophotometrically. Apparent stoichiometries of chlorophenol: H2O2 ranged from 1:1 for the tri- and tetrachlorophenol at pH 7 to 5:2 for pentachlorophenol at pH 4. The initial velocity (ν0) was only slightly influenced by changes in [H2O2] ? 5 μM. ν0 responded to [chlorophenol] according to the empirical expression ν0 = [lactoperoxidase]·(k1[chlorphenol] + k2[chlorophenol]2). The constant k1 was found to be 5.8 · 105, 1.8 · 106, 1.9 · 106 M?1 · s?1 for the protonated forms of penta-, tetra- and trichlorophenol, respectively, at pH 7. With the di- and monochlorophenol the solution soon became opaque, and the reaction ceased. The results show that more than one reaction occurs. Some comparisons were also made with horseradish peroxidase A and C. Cetyltrimethylammonium bromide prevented opaqueness, but was shown to be a substrate for lactoperoxidase. Assuming an average concentration of 0.1 μM for H2O2 and pentachlorophenol in man, the metabolic rate becomes 30 ng/h per g peroxidase-containing tissue, possibly with deposition of the products.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号