首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
From the experimental results of three independent methods: (1) indirect immunofluorescence employing monospecific anti-seminalplasmin-IgGs, (2) cell-free translation of poly(A)+ RNA from seminal vesicle and testicular tissue, as well as (3) Northern analysis of poly(A)+ RNA of the latter tissues with a synthetic seminalplasmin-specific antisense DNA probe, it is concluded that the biosynthesis of seminalplasmin occurs in seminal vesicles but not in testis.  相似文献   

2.
When total cytoplasmic RNA from mouse Friend cells is fractionated using oligo(dT)-cellulose or poly(U)-Sepharose chromatography, approximately 20% of the messenger RNA activity (as measured in the reticulocyte lysate cell-free system) remains in the unbound fraction, even though this contains < 0.5% of the poly(A) (as measured by titration with poly(U)). This RNA, operationally defined as poly(A)?, is found almost entirely in polysome structures in vivo. Its major translation products, as shown by one-dimensional sodium dodecyl sulphate-containing gels, are the histones and actin. Two-dimensional gels (isoelectric focusing: sodium dodecyl sulphate/gel electrophoresis) show that, with the exception of the mRNAs coding for histones, poly(A)? mRNA encodes similar proteins to poly(A)+ mRNA, though in very different abundances. This is directly confirmed by the arrest of the translation of the abundant poly(A)? mRNAs after hybridization with a complementary DNA transcribed from poly(A)+ RNA.RNA sequences which are rare in the poly(A)+ RNA are also found in poly(A)? RNA, as shown by hybridizing a cDNA transcribed from poly(A)+ RNA to total and poly(A)? polysomal RNA. That this does not simply represent a flow-through of poly(A)+ RNA is indicated by (i) the lack of poly(A) by hybridizing to poly(U) in this fraction, (ii) the fact that further passage through poly(U)-Sepharose does not remove the hybridizing sequences, (iii) the very different quantitative distribution of proteins encoded by poly(A)+ and poly(A)? RNAs. We also think that it does not result from removal of poly(A) from polyadenylated RNAs during extraction because RNAs prepared using the minimum of manipulations give similar results. The distribution of both total mRNA and α and β globin mRNAs between poly(A)+ and poly(A)? RNA does not change significantly during the dimethyl sulphoxide-induced differentiation of Friend cells.  相似文献   

3.
Abstract

A cDNA library derived from poly(A)+RNA of bull seminal vesicle- tissue was screened with a synthetic DNA hybridisation probe specific for the major protein of bull semen. A positive clone pMP17, containing a 680 bp insert, was sequenced. In combination with primer extension sequencing of poly(A)+RNA, a DNA sequence of 700 bp was determined. This DNA encoded a reading frame for 134 amino acids, starting with an ATG and terminated by a TAG codon. This comprised 25 amino acids of a signal peptide followed by 109 amino acids with the known sequence of the major protein.  相似文献   

4.
The major proteins of bovine seminal plasma, BSP-A1, BSP-A2, BSP-A3, and BSP-30kDa (collectively named BSP proteins) bind to phospholipids containing the phosphorylcholine moiety. An affinity purification method using a p-aminophenyl phosphorylcholine-Agarose (PPC-Agarose) affinity matrix was developed for their purification. In this study, we investigated the distribution of BSP-like analogues in seminal fluid of the human, porcine, hamster, mouse, and rat using this affinity matrix. Alcohol precipitates of the seminal plasma/seminal vesicle secretions (SP/SVS) were further delipidated using isopropyl ether:n-butanol (60:40). The protein preparations obtained were solubilized in a minimal volume of buffer A (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.02% NaN3), dialyzed against the same buffer, and applied to a PPC-Agarose column connected to a FPLC system. The unbound material was washed out and the adsorbed proteins eluted with buffer A containing 10 mM phosphorylcholine (PrC) and 10 M urea. The fractions were separated by SDS-PAGE, stained or transferred onto a nitrocellulose membrane, and probed with rabbit polyclonal anti-BSP antibodies. Anti-BSP cross-reacting proteins were detected in the seminal fluids of all the species investigated. Moreover, many of these proteins bound to the affinity matrix. The BSP proteins and their immunoreacting analogues appear to be ubiquitous in mammals and may possibly be involved in a common function such as in the modification of the lipid content of the sperm plasma membrane. © 1993 Wiley-Liss, Inc.  相似文献   

5.
During the breeding season, a major androgen-dependent protein with an apparent molecular weight of 21 kDa was isolated and purified from the seminal vesicles of three Saharan rodents (MLVSP21 from Meriones libycus, MSVSP21 from Meriones shawi, and MCVSP21 from Meriones crassus). The 21-kDa protein was isolated and purified from soluble seminal vesicle proteins of homogenate by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Using polyclonal antibodies directed against POSVP21 (Psammomys obesus seminal vesicles protein of 21 kDa), a major androgen-dependent secretory protein from sand rat seminal vesicles, identified previously as transgelin, we showed an immunological homology with POSVP21 by immunoblotting. These three major androgen-dependent proteins with a same apparent molecular weight of 21 kDa designated as MLVSP21 (Meriones libycus seminal vesicles protein of 21 kDa), MSVSP21 (Meriones shawi seminal vesicles protein of 21 kDa), and MCVSP21 (Meriones crassus seminal vesicles protein of 21 kDa) were localized by immunohistochemistry and identified by applying a proteomic approach. Our results indicated that the isolated proteins MLSVP21, MSSVP21, and MCSVP21 seem to correspond to the same protein: the transgelin. So that transgelin can be used as a specific marker of these rodent physiological reproduction mechanisms.  相似文献   

6.
Encysted embryos of Artemia contain latent mRNA, to a large extent associated with a fraction of cytoplasmic membranes. The membranes, purified by EDTA treatment and banding in a sucrose gradient at 1.17 g/cm3, include endoplasmic vesicles and mitochondria. The origin of the membrane-associated poly(A)+RNA was therefore investigated. In gel electrophoresis poly(A)+RNA from the purified membranes of dormant cysts forms two distinct bands at approx. 3·105 and 5·105 Da. Later during development the lighter component decreases. Nuclei from dormant cysts are devoid of poly(A)+RNA, while nuclei from developing embryos (50% emergence) contain a predominant poly(A)+RNA component of approx. 5·105 Da. 125I-labelled preparations of nuclear DNA and of nuclear and membrane-associated poly(A)+RNA were used in reassociation and hybridization experiments with excess nuclear DNA. Poly(A)+RNA from the membranes of dormant cysts hybridized to nuclear DNA to the same extent as the nuclear poly(A)+RNA from developing embryos. The hybridization of labelled, nuclear poly(A)+RNA to nuclear DNA was strongly inhibited by unlabelled membrane RNA from either dormant cysts or developing embryos. It is concluded that the stored, membrane-associated poly(A)+RNA in dormant cysts is essentially of nuclear origin. The 5·105-Da component is largely homologous with the corresponding component of nuclear poly(A)+RNA at later stages.  相似文献   

7.
Summary Tobacco cell suspension cultures responded to cytokinins (for instance kinetin) by full chloroplast differentiation. The hormone had the effect of stimulating the appearance of a few prominent plastid proteins. Synthesis of the light-harvesting chlorophyl a/b-binding protein (LHCP) in response to kinetin was noteworthy (Axelos M. et al.: Plant Sci Lett 33:201–212, 1984).Poly(A)+RNAs were prepared from cells grown in the presence of or without added kinetin. Poly(A)+RNA recovery and translation activity were not quantitatively altered by the hormone treatment. In vitro translation of polyadenylated mRNA into precursor polypeptides of LHCP (pLHCP) was quantified by immunoprecipitation and SDS-PAGE fractionation of pLHCP immunoprecipitates: pLHCP-mRNA translating activity was found to be stimulated in parallel to mature LHCP accumulation by kinetin-induced cells.Dot-blot and northern-blot hybridizations of poly(A)+RNA were carried out, using as a probe a pea LHCP-cDNA clone (Broglie R. et al.: Proc Natl Acad Sci USA 78: 7304–7308, 1981). A ten-fold increase of the level of pLHCP-encoding sequences was observed in poly(A)+RNA prepared from 9-d kinetin-stimulated cells, compared to control cells. Oligo(dT)-cellulose-excluded RNA fractions exhibited very low hybridization levels, in the same ratios as those obtained with poly(A)+RNA.Thus, the expression of LHCP-gene activity, in response to kinetin addition to tobacco cell suspension cultures, is regulated by the level of pLHCP-encoding mRNA rather than by translational or post-translational controls. re]19850218 rv]19850605 ac]19850613  相似文献   

8.
Summary Nuclear poly(A)+ and polysomal poly(A)+ RNA were isolated from gastrula and early tadpole stages of the amphibianXenopus laevis. Complementary DNA was synthesized from all RNA preparations. Hybridization reactions revealed that at least all abundant and probably most of the less frequent nuclear and polysomal poly(A)+ RNA species present at the gastrula stage are also present at the early tadpole stage. On the other hand, there are nuclear RNA sequences at the latter stage which appear, if at all, only at lower concentrations at the gastrula stage. The polysomal poly(A)+ RNA hybridization reactions suggest the existence of polysomal poly(A)+ RNA sequences at early tadpole stages which are not present in the corresponding gastrula stage RNA.By cDNA hybridization with poly(A) RNA it could be shown that most of the poly(A)+ containing RNA sequences transcribed into cDNA were also present within the poly(A) RNA. It was estimated, that these sequences are 10 fold more abundant within the poly(A) polysomal RNA and 3–6 more abundant within the poly(A) nuclear RNA as compared to the poly(A)+ RNAs.  相似文献   

9.
Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY-), TH+/NPY+, TH-/NPY-, TH-/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.  相似文献   

10.
The pattern of poly(A)-associated [poly(A)+] RNA synthesis was studied in rabbit cerebral cortex in the period following a single electroconvulsive shock (ECS). Labeled uridine was injected into the brain 2 and 4 hr after ECS and the animals sacrificed 1 hr later. Total and poly(A)+ RNA were then prepared from cortical nuclei and microsomes and analyzed. The amounts of newly synthesized total and poly(A)+ RNA in nuclei and microsomes appeared to be close to the control. However, the pattern of newly synthesized poly(A)+ nuclear RNA appeared to be still displaced toward the high molecular weights as it was in the early post-ECS period. The result indicates a long-lasting disturbance of brain poly(A)+-RNA metabolism by ECS.  相似文献   

11.
Summary The seminal vesicles synthesize in an androgen-dependent manner a neutral protein of 13.5 kDa molecular weight that makes up about 40% of their secretion (major protein). An antiserum against this protein raised in rabbits was used to localize the antigen within the seminal vesicles. In addition to intraluminal secretion of the seminal vesicles and the ampulla of the vas deferens, ejaculated and ampullary spermatozoa revealed an intense immunoreaction, which was restricted to the neck region of the sperm head and the middle piece, while the principal piece of the tail as well as the sperm head were devoid of immunoreactive material. Comparison of spermatozoa taken from the tail of the epididymis with ampullary spermatozoa showed that about 90% of the latter, but only 10–20% of the former presented this distributional pattern of immunoreactive sites. Epididymal epithelium as well as calf seminal vesicle epithelium showed no immunoreactivity with major protein antiserum. Using a pre-embedding staining technique with gold-labeled primary or secondary antibodies, respectively, no immunostaining could be achieved at the ultrastructural level. Incubation experiments of epididymal spermatozoa in EGTA-containing solutions in the absence of calcium resulted in a gradual labilization and eventual loss of the plasma membrane of the sperm middle piece. After removal of (at least part of) the plasma membrane, bound major protein could be visualized immunohistochemically close to the mitochondria of the middle piece using a gold-labeled primary or secondary antibody. The acceptor site for major protein therefore seems to reside inside the plasma membrane of the sperm middle piece. Incubation of epididymal spermatozoa in phospholipase-containing solutions removed the acceptor site from the spermatozoa. Separation by polyacrylamide treatment of proteins from epididymal sperm cells extracted by sodium hydroxide or phospholipase treatment, subsequently transblotted on nitrocellulose sheets and directly labeled with gold-tagged major protein, demonstrated a protein duplet with a molecular weight of 65 and 67 kDa, respectively, which appears to represent the specific binder of major protein underneath the sperm surface. Binding of major protein to this 66 kDa acceptor site is regarded as a physiological event that may be related to the onset of hyperactivated sperm motility.Dedicated to Professor Dr. Th.H. Schiebler on the occasion of his 65th birthdayThis study was supported by the Deutsche Forschungsgemeinschaft (grant Au 48/7-8)  相似文献   

12.
Summary Ovaries ofC. erythrocephala synthesize large amounts of poly(A)+ and poly(A) RNA during early and middle stages of oogenesis as shown by labelling with3H-uridine in vivo. After incubation for 1 h, a striking difference in the electrophoretic pattern of newly synthesized labelled poly(A)+ RNA and the poly(A)+ RNA present in sufficient amounts for optical density measurements (steady state poly(A)+ RNA) was observed. During early and mid-oogenesis, in the poly(A) RNA fraction, 4S predominantly mature rRNA, 5S RNA and tRNA were labelled. These fractions were no longer synthesized during late oogenesis, whereas poly(A)+ RNA was labelled continously During oogenesis stage specific differences in the size distribution of newly synthesized and steady state poly(A)+ RNA were not obvious. However, different sizes of labelled poly(A)+ RNA species were detected in 0–2h old preblastoderm embryos, after injection of3H-uridine into females either 3–4 days (stage 3–4 of oogenesis) or 24 h before oviposition (stage 5–6 of oogenesis). This difference in RNA synthesis was related to the presence of active nurse cell nuclei. The poly(A)+ RNA fraction represents about 2–3% of the total RNA in both ovaries and freshly laid eggs as judged by measurements of optical density and radioactivity bound to oligo(dT). The length of poly(A)-segments in ovarian poly(A)+ RNA varied from about 30 to 200 nucleotides.  相似文献   

13.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

14.
In this study, we have measured the synthesis and turnover of oligo(dT)cellulose-bound RNA [poly(A)+ RNA] in Xenopus laevis oocytes at the maximal lampbrush chromosome stage (stage 3) and at the completion of oocyte growth (stage 6). Oocytes at both stages are shown to be active in the synthesis of poly(A)+ RNA. In stage 6 oocytes, the mean rate of synthesis of stable poly(A)+ RNA is 15% the instantaneous rate of synthesis, while the mean half-life of the unstable component is 1.6 hr. In contrast, the instantaneous rate of synthesis in stage 3 oocytes is about one-third that seen in stage 6, and most of it is devoted to the production of unstable species with an average half-life of 5 hr. Studies on the nuclear versus the cytoplasmic distribution of the newly synthesized poly(A)+ RNA demonstrated that by the end of a 12-hr labeling period for stage 3 oocytes and a 24-hr labeling period for stage 6 oocytes, approximately half of the material was cytoplasmic. This cytoplasmic material had the same electrophoretic mobility as bulk poly(A)+ RNA. Similarly, as with bulk poly(A)+ RNA, little, if any, of the newly synthesized material was found to be polysomal. Also, poly(A) labeling studies indicated that the newly synthesized poly(A)+ RNA was associated with the synthesis of poly(A) of the same length as that appearing on bulk poly(A)+ RNA. Studies on the content of bulk oligo(dT)cellulose-bound RNA indicated that about 86 ng is present in both stage 3 and stage 6 oocytes. The continual synthesis of poly(A)+ RNA throughout oogenesis in the absence of its accumulation led to the conclusion that it must be turning over. These data are discussed in relation to the hypothesis that bulk levels of poly(A)+ RNA are maintained by continually changing rates of synthesis and degradation.  相似文献   

15.
Summary Sex in the monogenic blowflyChrysomya rufifacies is under the control of a germ-line autonomous maternal effect sex realizer. In order to identify the ovarian poly(A)+RNA that might be related to sex predetermination, we analysed the patterns of cell-free translation products of total poly(A)+RNA from female and male predetermined ovaries and oocytes. During vitellogenesis we observed one transient sex-linked difference in a stable pattern composed of more than 800 in vitro translated proteins. This difference, however, was no longer detectable in mature oocytes.  相似文献   

16.
By hybridization with [3H]labeled globin cDNA the contents of globin coding sequences in total nuclear RNA, poly(A)+nuclear RNA, poly(A)--nuclear RNA and polysomal RNA of chicken immature red blood cells was determined to be 0.86%, 20%, 0.42% and 1% respectively. As the poly(A)+-fraction comprises only about 2% of total nuclear RNA, globin coding sequences are distributed with 49% in the poly(A)+-fraction and with 51% in the poly(A)--fraction.Part of the mRNA sequences which are found in liver are also transcribed in immature red blood cells. These sequences are enriched in poly(A)+-nuclear RNA as the globin coding sequences but their total amount in the poly(A)+-fraction is much smaller than in the poly(A)--fraction.When nuclear RNA from immature red blood cells was translated in an ascites tumor cell-free system, 20% of the newly synthesized proteins were globin chains. The percentage of globin chains in the newly synthesized proteins increased to over 70% when poly(A)+-nuclear RNA was translated. Only about 7.5% of globin chains were found in proteins coded by poly(A)--nuclear RNA.  相似文献   

17.
The relative amounts of newly synthesized poly(A)+ and poly(A)? mRNA have been determined in developing embryos of the frog Xenopus laevis. Polysomal RNA was isolated and fractionated into poly(A)+ and poly(A)? RNA fractions with oligo(dT)-cellulose. In normal embryos the newly synthesized polysomal poly(A)+ RNA has a heterodisperse size distribution as expected of mRNA. The labeled poly(A)? RNA of polysomes is composed mainly of rRNA and 4S RNA. The amount of poly(A)? mRNA in this fraction cannot be quantitated because it represents a very small proportion of the labeled poly(A)? RNA. By using the anucleolate mutants of Xenopus which do not synthesize rRNA, it is possible to estimate the percentage of mRNA which contains poly(A) and lacks poly(A). All labeled polysomal RNA larger than 4S RNA which does not bind to oligo(dT)-cellulose in the anucleolate mutants is considered presumptive poly(A)? mRNA. The results indicate that about 80% of the mRNA lacks a poly(A) segment long enough to bind to oligo(dT). The poly(A)+ and poly(A)? mRNA populations have a similar size distribution with a modal molecular weight of about 7 × 105. The poly(A) segment of poly(A)+ mRNA is about 125 nucleotides long. Analysis of the poly(A)? mRNA fraction has shown that it lacks poly(A)125.  相似文献   

18.
Upon desiccation of gametophytes of the desiccation-tolerant moss Tortula ruralis preexisting pools of poly(A) RNA (rRNA) remain inact, regardless of the speed at which desiccation is achieved. Preexisting poly(A)+ RNA pools (mRNA) are unaffected by slow desiccation but are substantially reduced during rapid desiccation. Poly(A) RNA involved in protein synthesis is also unaffected by desiccation, whereas the levels of polysomal poly(A)+ RNA in rapid- and slow-dried moss closely reflect the state of the protein synthetic complex in these dried samples.

Poly(A) RNA pools, both total and polysomal, are also stable during the rehydration of both rapid- and slow-dried moss. The total poly(A)+ RNA pool decreases upon rehydration, but this reduction is simply an expression of the normal turnover of poly(A)+ RNA in this moss. Analysis of polysomal fractions during rehydration reveals the continued use of conserved poly(A)+ RNA for protein synthesis. The rate of synthesis of poly(A)+ RNA upon rehydration appears to depend upon the speed at which prior desiccation is administered. Rapidly dried moss synthesizes poly(A)+ RNA at a faster rate, 60 to 120 minutes after the addition of water, than does rehydrated slowly dried moss. Recruitment of this RNA into the protein synthetic complex also follows this pattern. Comparative studies involving the aquatic moss Cratoneuron filicinum are used to gain an insight into the relevance of these findings with respect to the cellular mechanisms associated with desiccation tolerance.

  相似文献   

19.
The RNA of full-grown oocytes of Xenopus laevis contains two distinct size classes of poly(A), designated poly(A)S and poly(A)L, which contain 15–30 (mean = 20) and 40–80 (mean = 61) A residues, respectively. Both poly(A)L and poly(A)S are associated with RNA which is heterogeneous in size. The two classes of poly(A)+ RNA can be separated by affinity chromatography: Only poly(A)L+ RNA binds to oligo(dT)-cellulose under appropriate conditions, but up to 50% of the poly(A)S+ RNA can be isolated from the void fraction by binding to poly(U)-Sepharose. Both classes of poly(A)+ RNA are active as messenger RNA in an in vitro system and yield identical patterns of in vitro protein products. Previtellogenic oocytes contain almost exclusively poly(A)L, which accumulates up to vitellogenesis but remains almost constant in amount (molecules/oocyte) during vitellogenesis and in the full-grown oocyte. Poly(A)S accumulates (molecules/oocyte) from early vitellogenesis up to the full-grown oocyte. The total number of poly(A)+ RNA molecules per oocyte increases throughout oogenesis from 2 × 1010/previtellogenic oocyte [80–90% poly(A)L] to 20 × 1010/full-grown oocyte (25–40% poly(A)L). It is argued that poly(A)S is protected from degradation in the oocyte, thus stabilizing the “maternal” poly(A)+ mRNA.  相似文献   

20.
The metabolism of a poly(A) minus mRNA fraction in HeLa cells   总被引:40,自引:0,他引:40  
C Milcarek  R Price  S Penman 《Cell》1974,3(1):1-10
About 30% of HeLa cell mRNA lacks poly(A) when labeled in the presence of different rRNA inhibitors. Our method of RNA fractionation precludes contamination of the poly(A)? mRNA with large amounts of poly(A)+ sequences. The poly(A)? species is associated with polyribosomes, has an average sedimentation value equal to or greater than poly(A)+ mRNA, and behaves like the poly(A)+ mRNA in its sensitivity to EDTA and puromycin release from polyribosomes. There is very little, if any, hybridization at Rot values characteristic of abundant RNA sequences between the poly(A)? RNA fractions from total cytoplasm or from polyribosomes and 3H-cDNA made to poly(A)+ RNA. This indicates that poly(A)? mRNA does not arise from poly(A)+ mRNA by nonadenylation, deadenylation, or degradation of random abundant mRNA sequences. The rate of accumulation of poly(A)? mRNA larger than 9S in the cytoplasm parallels the accumulation of poly(A)? mRNA. The poly(A)? mRNA is maintained as approximately 30% of the total labeled mRNA in a short (90 min) and in a long (20 hr) time period. These data indicate that poly(A)? mRNA is not short-lived nuclear or cytoplasmic heterogeneous RNA contamination, and that the half-life of the poly(A)? mRNA may parallel that of the poly(A)+ mRNA. Cordycepin appears to almost completely (95%) inhibit poly(A)+ mRNA while only partially (60%) inhibiting the poly(A)? mRNA. The origin of the cordycepin-insensitive mRNA has not been ascertained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号