首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of histidine-related materials with copper(II) and ascorbate under physiological conditions has been studied chemically. We discovered that 1-methylimidazole and its analogues, including biological metabolites L-1-methylhistidine and anserine (beta-alanyl-L-1-methylhistidine), exhibited dramatic reactivity with copper(II)/ascorbate. Reaction of copper(II) and ascorbate occurs specifically at the C-2 position of the imidazole ring of L-1-methylhistidine and anserine derivatives with mono-oxygenation to give the 1-methyl-2-imidazolones in good to excellent yields (70-80%). The occurrence of an oxocopper(III) intermediate in the oxidation process of ascorbate is postulated.  相似文献   

2.
Homocarnosine and carnosine have been identified in bovine brain extracts which are effective in protecting mice against infections by Staphylococcus aureus. These peptides, as well as l-1-methylhistidine, beta-alanine, gamma-aminobutyric acid, delta-aminovaleric acid, epsilon-aminocaproic acid, 1-aminomethylcyclohexane-4-carboxylic acid, and anserine, were tested as prophylactic agents against S. aureus infections in C3H and Swiss mice. Histidine and methylhistidine were ineffective in preventing mortality in both mouse strains. Carnosine, anserine, and epsilon-aminocaproic acid were effective in C3H but not in Swiss mice. beta-Alanine and gamma-aminobutyric acid were weakly effective (C3H) or ineffective (Swiss). delta-Aminovaleric and 1-aminomethylcyclohexane-4-carboxylic acid (tested only in Swiss) were somewhat effective in early stages of the infection. Homocarnosine was the best compound and was highly effective in protecting both mouse strains against S. aureus infections by the testing procedure employed.  相似文献   

3.
Abstract: Homocarnosine (γ-aminobutyrylhistidine) is a brain-specific dipeptide. Homocarnosinosis is a familial metabolic disorder in which spastic paraplegia, progressive mental deficiency, and retinal pigmentation coexist with increased CSF homocarnosine levels, i.e. approximately 20 times higher than the mean control level. In the present study, the urinary excretion of carnosine ( β -alanylhistidine) and anserine ( β -alanyl-1-methylhistidine) was determined in patients with homocarnosinosis and in their close relatives. Both the patients and their relatives were also loaded with chicken meat, which is rich in anserine and carnosine. The results were compared with those obtained in childhood hypercarnosinuria with serum carnosinase deficiency. Somewhat surprisingly, patients with homocarnosinosis were also shown to have hypercarnosinuria. Chicken meat loading in healthy individuals results in increased excretion of carnosine and anserine and, in addition, 1-methylhistidine in the urine. Homocarnosinosis patients and patients with serum carnosinase deficiency also showed an increased excretion of carnosine and anserine, but 1-methylhistidine was not detected in serum carnosinase deficiency, and it was present only in very small amounts in homocarnosinosis. This defect seems to be due to lack of the hydrolyzing enzyme activity. The biochemical and clinical similarities between adult homocarnosinosis and infantile serum carnosinase deficiency are intriguing. A complete insight into the relationship between them must await further investigation.  相似文献   

4.
Phosphate buffer solutions of two dipeptides prevalent in striated muscle, L-carnosine (beta-alanyl-L-histidine) and L-anserine (beta-alanyl-L-1-methylhistidine), produce active oxygen species as measured by bleaching of N,N-dimethyl-4-nitrosoaniline (RNO). Activity is enhanced 5-14-fold in the presence of 2-mercaptoimidazoles such as ergothioneine, carbimazole (3-methyl-2-mercaptoimidazole-1-carboxylate), methimazole (2-mercapto-1-methylimidazole) and 2-mercaptoimidazole but only slightly by thiourea and dimethylthiourea. Activity is proportional to carnosine concentration and to mercaptoimidazole concentration at a fixed concentration of the second component. A variety of imidazoles closely related to carnosine and anserine are inactive, even after addition of transition metal ions. Activity is moderately increased above the pKa of the carnosine imidazole ring (pH 7.2, 7.5 and 8.0) versus below the pKa (pH 6.5 and 6.8). Activity is slightly increased by addition of copper or cobalt ions but not by addition of ferrous or ferric ions. Activity is decreased by Chelex 100 pretreatment of phosphate buffer and stimulated when copper or cobalt ions are added to the chelated buffer but there is no significant stimulation by ferric ions. Catalase eliminates most activity but superoxide dismutase has little effect. We propose that metal-carnosine and metal-anserine complexes produce superoxide and also serve as superoxide dismutases with resultant accumulation of hydrogen peroxide. An unidentified radical produced from hydrogen peroxide subsequently bleaches RNO. From the biological distributions of carnosine, anserine and ergothioneine, we infer that deleterious effects are probably minimal under normal physiological circumstances due to tissue and cellular compartmentalization and to sequestration of these compounds and transition metal ions.  相似文献   

5.
Carnosine, anserine and copper(II) ion all bind to specific sites on bovine serum albumin, and, in addition, both dipeptides chelate copper(II) ion in the absence of serum albumin. Thus a solution of dipeptide, copper(II) ion and serum albumin exhibits several complexes that arise from the competing binding reactions. Since a change in this complex equilibrium might occur in Wilson's disease, we have investigated the reactions between the various complexes with NMR and ESR spectroscopy. Serum albumin simultaneously binds the copper(II) ion and carnosine to separate sites rather than forming a mixed chelate, but carnosine still is capable of competing with serum albumin for subsaturating amounts of copper.  相似文献   

6.
Although thiourea has been used widely to study the role of hydroxyl radicals in metal-mediated biological damage, it is not a specific hydroxyl radical scavenger and may also exert antioxidant effects unrelated to hydroxyl radical scavenging. Thus, we investigated the effects of thiourea on copper-induced oxidative damage to bovine serum albumin (1 mg/ml) in three different copper-containing systems: Cu(II)/ascorbate, Cu(II)/H2O2, and Cu(II)/H2O2/ascorbate [Cu(II), 0.1 mM; ascorbate, 1 mM; H2O2, 1 mM]. Oxidative damage to albumin was measured as protein carbonyl formation. Thiourea (0.1–10 mM) provided marked and dose-dependent protection against protein oxidation in all three copper-containing systems. In contrast, only minor protection was observed with dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Strong protection was also observed with dimethylthiourea, but not with urea or dimethylurea. Thiourea also significantly inhibited copper-catalyzed oxidation of ascorbate, and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous, but not cupric, copper, as demonstrated by both UV-visible and low temperature electron spin resonance measurements. We conclude that the protection by thiourea against copper-mediated protein oxidation is not through scavenging of hydroxyl radicals, but rather through the chelation of cuprous copper and the formation of a redox-inactive thiourea-copper complex.  相似文献   

7.
(2S)-Flavanone 3-hydroxylase from flowers of Petunia hybrida catalyses the conversion of (2S)-naringenin to (2R,3R)-dihydrokaempferol. The enzyme could be partially stabilized under anaerobic conditions in the presence of ascorbate. For purification, 2-oxoglutarate and Fe2+ had to be added to the buffers. The hydroxylase was purified about 200-fold by a six-step procedure with low recovery. The Mr of the enzyme was estimated by gel filtration to be about 74,000. The hydroxylase reaction has a pH optimum at pH 8.5 and requires as cofactors oxygen, 2-oxoglutarate, Fe2+ and ascorbate. With 2-oxo[1-14C]glutarate in the enzyme assay dihydrokaempferol and 14CO2 are formed in a molar ratio of 1:1. Catalase stimulates the reaction. The product was unequivocally identified as (+)-(2R,3R)-dihydrokaempferol. (2S)-Naringenin, but not the (2R)-enantiomer is a substrate of the hydroxylase. (2S)-Eriodictyol is converted to (2R,3R)-dihydroquercetin. In contrast, 5,7,3',4',5'-pentahydroxy-flavanone is not a substrate. Apparent Michaelis constants for (2S)-naringenin and 2-oxoglutarate were determined to be respectively 5.6 mumol X l-1 and 20 mumol X l-1 at pH 8.5. The Km for (2S)-eriodictyol is 12 mumol X l-1 at pH 8.0. Pyridine 2,4-dicarboxylate and 2,5-dicarboxylate are strong competitive inhibitors with respect to 2-oxoglutarate with Ki values of 1.2 mumol X l-1 and 40 mumol X l-1, respectively.  相似文献   

8.
The combined solid-phase extraction (Isolute PRS columns) and reversed-phase gradient HPLC method presented provides a sensitive, reproducible and selective quantification of carnosine, anserine, balenine, homocarnosine, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. Recoveries were 91–115%. Lower limits of detection were 0.005–0.010 mmol kg dry muscle. The compounds were isolated from other physiological amino acids and small peptides and resolved within a single chromatographic run of 55 min. Concentrations of these compounds in equine myocardium, diaphragm, skeletal muscle, camel muscle and individual muscle fibres of both species are presented for the first time.  相似文献   

9.
The aim of this work was to assess, in vitro and in vivo, the interference of ascorbate and acetaminophen on glucose measurements by a needle-type glucose sensor detecting hydrogen peroxide generated during the enzymatic oxidation of glucose, and to ascertain whether the protection against interference by the membranes used in the construction of the electrode is feasible. The oxidation of ascorbate and acetaminophen on a platinum electrode set at a 650 mV potential yielded a current representing 75 +/- 5% and 25 +/- 6% of that generated by the oxidation of an equimolar concentration of hydrogen peroxide, respectively. The bias introduced by the presence of 100 mumol l-1 ascorbate on the reading of 5 mmol l-1 glucose by the complete sensor (electrode + membranes) would be minimal (approximately 0.4 mmol l-1). By contrast, the bias introduced by 200 mumol l-1 of acetaminophen (a plasma concentration easily reached in clinical practice) was about 7 mmol l-1. The sensor was implanted subcutaneously in anaesthetized rats (n = 3). Using the current generated in the presence of a plasma acetaminophen concentration of about 200 mumol l-1 for glucose monitoring would lead to a major underestimation (approx. 6 mmol l-1) of subcutaneous glucose concentrations.  相似文献   

10.
The effects of additions of CuSO4 X 5H2O to final concentrations between 0.0004 and 105 micrograms Cu l-1 on growth, reproduction, survival and haemoglobin content of Daphnia magna were studied in hard reconstituted water and compared to the response in the dilution water without addition of copper. Concentrations of copper are nominal values. The 48-hr EC50 (immobilization) for unfed neonates was 6.5 micrograms Cu l-1 and the 48-hr and 21-day LC50 for fed neonates were 18.5 and 1.4 microgram Cu l-1, respectively. Growth expressed as body length of juveniles after 7 days and adult females after 21 days was only reduced in survivors at the highest non-lethal concentration (6.6 micrograms Cu l-1). Reproduction was stimulated by low concentrations of copper. Optimal reproduction after 21 days was found between 0.001 and 0.1 microgram Cu l-1. Higher concentrations were partially inhibitory (0.4 microgram Cu l-1), stimulatory (0.8 and 1.6 microgram Cu l-1) or completely inhibitory (3.2 micrograms Cu l-1 and above). The stimulatory peak around 1 microgram Cu l-1 was accompanied by a reduced survival (above 0.4 microgram Cu l-1). The Zero Equivalent Point (ZEP) for reproduction at non-reduced survival was 0.23 microgram Cu l-1. This concentration should be "safe" for D. magna under prevailing conditions (reconstituted water with a hardness of 250 mg l-1 as CaCo3 and a synthetic diet based on fish food and baby gruel). The haemoglobin content was affected by copper in a complex pattern which was not related to growth, reproduction or survival.  相似文献   

11.
Xyloglucan is degraded by a mixture of copper(II), hydrogen peroxide and ascorbate. In the presence of ascorbate and/or hydrogen peroxide, copper(II) species were rapidly reduced to copper(I), which react with hydrogen peroxide. Spin-trapping experiments showed that hydroxyl radicals formed and attacked xyloglucan causing its degradation. The formation of a carbon-centred ascorbyl (C-ascorbyl) radical and its degradation with the formation of oxalate, was also caused by hydroxyl radicals. As a consequence, the features of the bis(oxalate) copper(II) complex clearly appeared in the frozen solution ESR spectra. The formation of carbon-centred radicals on the xyloglucan is the trigger for a series of possible molecular rearrangements which led to its oxidative scission.  相似文献   

12.
Exposure of albumin to Cu(II) (10-100 microM) and ascorbate (0.1-2 mM) results in extensive molecular modifications, indicated by decreased fluorescence and chain breaks. The rate of utilization of molecular oxygen and ascorbate as a function of Cu(II) concentration is non-linear at copper/albumin ratios of greater than 1. It appears that Cu(II) bound to the tightest albumin-binding site is less available to the ascorbate than the more loosely bound cation. SDS/polyacrylamide-gel electrophoresis reveals new protein bands corresponding to 50, 47, 22, 18 and 3 kDa. For such a cleavage pattern, relatively few (approximately 3) and rather specific chain breaks occurred. Repeated addition of portions of ascorbate to the albumin/Cu(II) mixture results in increased intensity of the new bands. The absence of Cu(II) or the presence of metal chelating agents is inhibitory. There was no evidence of intermolecular cross-linking or of the formation of insoluble, albumin-derived, material. A mechanism is proposed wherein the loosely bound Cu(II) participates in a Fenton-type reaction. This generates OH. radicals, which rapidly inter-react with the protein and modify it in a 'site-specific' manner.  相似文献   

13.
Ascorbate reversibly inhibits catalase, and this inhibition is enhanced and rendered irreversible by the prior addition of copper(II)-bishistidine. In the absence of copper, the inhibition was prevented and reversed by ethanol, but not by superoxide dismutase, benzoate, mannitol, thiourea, desferrioxamine, or DETAPAC. In the presence of the copper complex mannitol, benzoate, and superoxide dismutase still had no effect, but thiourea, desferrioxamine, DETAPAC, or additional histidine decreased the extent of inactivation to that seen in the absence of copper. In the presence of copper, ethanol protected at [ascorbate] less than 1 mM, but was ineffective at [ascorbate] greater than 2 mM, even in the absence of oxygen. Although in the absence of copper, complete removal of oxygen provided full protection against inactivation by ascorbate, this protection was not seen if the catalase was briefly preincubated with H2O2 prior to flushing with nitrogen, or if copper was present. In fact, if copper was present, inactivation was enhanced by the removal of oxygen. Increasing the concentration of oxygen from ambient to 100% slowed the inactivation, whether or not copper was present. It is concluded that the initial reversible inactivation involves reaction with H2O2 to form compound I, followed by one electron reduction of compound I to compound II. In the presence of added copper, the initial (reversible) inactivation allows H2O2 to accumulate sufficiently to permit irreversible inactivation. Since in the presence of copper oxygen is not required, and neither the reversible nor the irreversible inactivation was prevented by conventional scavengers of active forms of oxygen, the inactivation is likely mediated by semidehydroascorbate, and/or it may involve site-specific generation of the damaging intermediates.  相似文献   

14.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

15.
The spectroscopic features of cucumber ascorbate oxidase (AOase) and its type-2 copper-depleted (T2D) derivative, and the electron pathway among the copper sites in the enzyme have been investigated. The electronic and CD spectra of native and T2D AOase in the visible region bear a striking resemblance to those of plastocyanin or azurin, which contain type-1 copper alone. The electronic absorption shoulder of the native enzyme at around 330 nm for the native enzyme which has been assigned to type-3 copper disappears with the depletion of the type-2 copper. The reduction of AOase with a large excess of hexacyanoferrate(II) results in a selective reduction of the type-2 Cu, giving rise to an additional EPR-detectable species which is considered to be originated from partly reduced type-3 copper. The type-1 copper is, however, not reduced even in the presence of excess hexacyanoferrate(II). The redox potential of type-1 Cu was determined to be +350 mV, which is distinctly lower than that of hexacyanoferrate(II-III). Type-2 copper was supposed to be a mediator of the electron transfer between type-1 and type-3 coppers in consideration of the extremely low activity of the T2D enzyme under the same condition. A comparison of the electron pathway in AOase with that in laccase is also argued.  相似文献   

16.
The mechanism of enzymatic inactivation of purified and membrane-bound acetylcholine esterase by ascorbate and copper was investigated. While the exposure of the enzyme to either ascorbate or copper did not cause enzymatic inactivation, the incubation of the enzyme with a combination of both ascorbate and copper resulted in a loss in acetylcholine esterase activity, which was time dependent. The enzymatic inactivation required either molecular oxygen or hydrogen peroxide under anaerobic conditions. Scavengers of hydroxyl radicals at concentrations of up to 100 mM did not provide protection to acetylcholine esterase. Only mannitol at very high concentrations (above 1 M) efficiently prevented the inactivation of the enzyme. The kinetics of the aerobic oxidation of reduced ascorbate in the presence of acetylcholine esterase and copper closely followed the rate of enzyme inactivation. Addition of the chelating agents EDTA and diethylenetriaminepentaacetic acid prevented both the oxidation of ascorbate and the inactivation of the enzyme. In the presence of low concentrations of histidine (0.5-2.0 mM), which forms high affinity complexes with copper, the rate of ascorbate oxidation was similar to that recorded in its absence. On the other hand, no enzyme inactivation was indicated in the presence of histidine. Low temperature EPR measurements have demonstrated the binding of copper to the enzyme, and have shown the reduction of the cupric enzyme to the corresponding cuprous complex. In view of these results, a general "site-specific" mechanism for biological damage can be offered, in which copper(II) ions are bound to enzymes or other biological macromolecules. Ascorbate plays a dual role: it reduces the cupric complex to the corresponding cuprous state and serves as a source for H2O2, which, in turn, reacts with the reduced copper complex, in a Fenton reaction. In this reaction, secondary hydroxyl radicals are site specifically formed, and react preferentially with the protein, at the site of their formation, causing its inactivation. This mechanism is analogous to that previously proposed (Samuni, A., Chevion, M., and Czapski, G. (1981) J. Biol. Chem. 256, 12632-12635) for the enhancement of the biological damage caused by superoxide in the presence of copper.  相似文献   

17.
(1) 45% of the total copper of green zucchini ascorbate oxidase is EPR-detectable. At least two species of copper are present, one with a small A parallel (Type 1) and one with a large A parallel (Type 2). Computer simulated spectra indicated 50% contribution by each type of copper. (2) Azide inhibited ascorbate oxidase activity by an uncompetitive mechanism. EPR and optical spectra performed on titration of ascorbate oxidase with azide indicated the formation of a copper-azide complex. The Type 2 copper appears to be the binding site of azide. The involvement of the EPR non-detectable copper as an anion binding site with high affinity toward azide can not be excluded.  相似文献   

18.
Isocratic reverse phase analytical high performance liquid chromatography (HPLC) has been used to examine naturally occurring imidazoles of cardiac and skeletal muscles. Elution of muscle extracts with a phosphate buffer mobile phase from columns packed with hypersil ODS (5 micron) resulted in good separation of the skeletal muscle imidazole-containing dipeptides carnosine and anserine. Measured concentrations corresponded to published values. N-Acetyl forms that were not commercially available were prepared from their parent compounds and their identities verified by NMR-spectroscopy. Examination of frog cardiac muscle confirmed the presence of N-acetylhistidine and also indicated the presence of its 1-methyl derivative. Extracts of mammalian cardiac muscle were examined by HPLC which indicated the presence of low concentrations of carnosine but substantial amounts of N-acetyl forms of histidine, 1-methylhistidine, carnosine and anserine. Fractions corresponding to the numerous peaks were examined using staining systems specific for certain chemical features and compared to results obtained for commercial or synthetic standards. Results of these tests supported the chromatographic data. The total concentrations in cardiac muscle of these imidazole-containing substances (approx. 10 mM) is sufficient to alter significantly the sensitivity of their contractile apparatus to calcium ions.  相似文献   

19.
Ophidine (β-alanyl-3-methylhistidine) was first detected in the urine of two patients and later in two members of the laboratory staff loaded with whale meat, by column chromatography, high-voltage paper electrophoresis and two-dimensional paper chromatography.The ophidine peak was detected between homocarnosine and dimethylarginine using a lithium buffer gradient in column chromatography. In paper chromatography the ophidine spot was detected at a position close to anserine and homocarnosine. The ophidine in the urine from the patients was of dietary origin since it was absent in the urine a few weeks later.  相似文献   

20.
Urate and ascorbate are the major water-soluble low molecular weight antioxidants in serum. Much attention has been devoted to the effect of these antioxidants on lipoprotein peroxidation in vivo and on their effect on copper-induced peroxidation ex vivo. These studies revealed that urate inhibits ascorbate oxidation in vitro, whereas the effect of ascorbate on urate oxidation has not been systematically studied thus far. The present study addresses mechanistic aspects of the kinetics of copper-induced oxidation of both these antioxidants and their mutual effects in aqueous solutions. We found that: (i) ascorbate becomes oxidized much faster than urate. (ii) Urate inhibits the oxidation of ascorbate but, even in the presence of excess urate, ascorbate becomes oxidized much faster than urate. (iii) Ascorbate, as well as the products of its oxidation (and/or hydrolysis) inhibit the copper-induced oxidation of urate. All these results are consistent with the hypothesis that the rate of ascorbate oxidation is determined by the rate of reoxidation of reduced copper (Cu(I)) to Cu(II) by molecular oxygen, whereas the rate of urate oxidation is governed by the rate of oxidation of urate within a 2:1 urate/copper complex. We think that the mutual effects of urate and ascorbate on each other's oxidation are likely to enhance their inhibitory effect on lipid peroxidation in biologically relevant systems including membranes and lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号