首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Macrophage-derived endocannabinoids have been implicated in endotoxin (lipopolysaccharide (LPS))-induced hypotension, but the endocannabinoid involved and the mechanism of its regulation by LPS are unknown. In RAW264.7 mouse macrophages, LPS (10 ng/ml) increases anandamide (AEA) levels >10-fold via CD14-, NF-kappaB-, and p44/42-dependent, platelet-activating factor-independent activation of the AEA biosynthetic enzymes, N-acyltransferase and phospholipase D. LPS also induces the AEA-degrading enzyme fatty acid amidohydrolase (FAAH), and inhibition of FAAH activity potentiates, whereas actinomycin D or cycloheximide blocks the LPS-induced increase in AEA levels and N-acyltransferase and phospholipase D activities. In contrast, cellular levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are unaffected by LPS but increased by platelet-activating factor. LPS similarly induces AEA, but not 2-AG, in mouse peritoneal macrophages where basal AEA levels are higher, and the LPS-stimulated increase in AEA is potentiated in cells from FAAH-/- as compared with FAAH+/+ mice. Intravenous administration of 107 LPS-treated mouse macrophages to anesthetized rats elicits hypotension, which is much greater in response to FAAH-/- than FAAH+/+ cells and is susceptible to inhibition by SR141716, a cannabinoid CB1 receptor antagonist. We conclude that AEA and 2-AG synthesis are differentially regulated in macrophages, and AEA rather than 2-AG is a major contributor to LPS-induced hypotension.  相似文献   

2.
Human mast cells (HMC-1) take up anandamide (arachidonoyl-ethanolamide, AEA) with a saturable process (K(m)=200+/-20 nM, V(max)=25+/-3 pmol min(-1) mg protein(-1)), enhanced two-fold over control by nitric oxide-donors. Internalized AEA was hydrolyzed by a fatty acid amide hydrolase (FAAH), whose activity became measurable only in the presence of 5-lipoxygenase, but not cyclooxygenase, inhibitors. FAAH (K(m)=5.0+/-0.5 microM, V(max)=160+/-15 pmol min(-1) mg protein(-1)) was competitively inhibited by palmitoylethanolamide. HMC-1 cells did not display a functional cannabinoid receptor on their surface and neither AEA nor palmitoylethanolamide affected tryptase release from these cells.  相似文献   

3.
The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. Such apparent saturation can be explained by rate-limited delivery of AEA through an unstirred water layer surrounding the cells (1). In support of this, we observed kinetics consistent with rate-limited diffusion at 0 degrees C. Novel transport inhibitors have been synthesized that are either weak FAAH inhibitors or do not inhibit FAAH in vitro (e.g. UCM707, OMDM2, and AM1172). In the current study, none of these purported AEA transporter inhibitors affected uptake at 25 s. Longer incubation times illuminate downstream events that drive AEA uptake. Unlike the situation at 25 s, the efficacy of these inhibitors was unmasked at 5 min with appreciable inhibition of AEA accumulation correlating with partial inhibition of AEA hydrolysis. The uptake and hydrolysis profiles observed with UCM707, VDM11, OMDM2, and AM1172 mirrored two selective and potent FAAH inhibitors CAY10400 and URB597 (at low concentrations), indicating that weak inhibition of FAAH can have a pronounced effect upon AEA uptake. At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.  相似文献   

4.
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.  相似文献   

5.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   

6.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

7.
8.
Human immunodeficiency virus type-1 coat glycoprotein gp120 causes delayed apoptosis in rat brain neocortex. Here, we investigated the possible role of the endocannabinoid system in this process. It is shown that gp120 causes a time-dependent increase in the activity and immunoreactivity of the anandamide (AEA)-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), paralleled by increased activity of the AEA membrane transporter and decreased endogenous levels of AEA. The AEA-synthesizing phospholipase D and the AEA-binding receptors were not affected by gp120. None of the changes induced by gp120 in the cortex were induced by bovine serum albumin, nor were they observed in the hippocampus of the same animals. Also, the activity of 5-lipoxygenase, which generates AEA derivatives able to inhibit FAAH, decreased down to approximately 25% of the control activity upon gp120 treatment, due to reduced protein level ( approximately 45%). In addition, the FAAH inhibitor methyl-arachidonoyl fluorophosphonate significantly reduced gp120-induced apoptosis in rat brain neocortex, whereas selective blockers of AEA membrane transporter or of AEA-binding receptors were ineffective. Taken together, these results suggest that gp120, by activating FAAH, decreases endogenous levels of AEA, and the latter effect seems instrumental in the execution of delayed neuronal apoptosis in the brain neocortex of rats.  相似文献   

9.
The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The formation of apoptotic bodies induced by AEA was paralleled by increases in intracellular calcium (3-fold over the controls), mitochondrial uncoupling (6-fold), and cytochrome c release (3-fold). The intracellular calcium chelator EGTA-AM reduced the number of apoptotic bodies to 40% of the controls, and electrotransferred anti-cytochrome c monoclonal antibodies fully prevented apoptosis induced by AEA. Moreover, 5-lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid and MK886, cyclooxygenase inhibitor indomethacin, caspase-3 and caspase-9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK, but not nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester, significantly reduced the cell death-inducing effect of AEA. The data presented indicate a protective role of cannabinoid receptors against apoptosis induced by AEA via vanilloid receptors.  相似文献   

10.
Evidence for the role of the cannabimimetic fatty acid derivatives (CFADs), i.e. anandamide (arachidonoylethanolamide, AEA), 2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA), in the control of inflammation and of the proliferation of tumor cells is reviewed here. The biosynthesis of AEA, PEA, or 2-AG can be induced by stimulation with either Ca(2+) ionophores, lipopolysaccharide, or platelet activating factor in macrophages, and by ionomycin or antigen challenge in rat basophilic leukemia (RBL-2H3) cells (a widely used model for mast cells). These cells also inactivate CFADs through re-uptake and/or hydrolysis and/or esterification processes. AEA and PEA modulate cytokine and/or arachidonate release from macrophages in vitro, regulate serotonin secretion from RBL-2H3 cells, and are analgesic in some animal models of inflammatory pain. However, the involvement of endogenous CFADs and cannabinoid CB(1) and CB(2) receptors in these effects is still controversial. In human breast and prostate cancer cells, AEA and 2-AG, but not PEA, potently inhibit prolactin and/or nerve growth factor (NGF)-induced cell proliferation. Vanillyl-derivatives of anandamide, such as olvanil and arvanil, exhibit even higher anti-proliferative activity. These effects are due to suppression of the levels of the 100 kDa prolactin receptor or of the high affinity NGF receptors (trk), are mediated by CB(1)-like cannabinoid receptors, and are enhanced by other CFADs. Inhibition of adenylyl cyclase and activation of mitogen-activated protein kinase underlie the anti-mitogenic actions of AEA. The possibility that CFADs act as local inhibitors of the proliferation of human breast cancer is discussed here.  相似文献   

11.
The biological activity of endocannabinoids like anandamide (AEA) and 2-arachidonoylglycerol (2-AG) is subjected in vivo to a “metabolic control”, exerted mainly by catabolic enzymes. AEA is inactivated by fatty acid amide hydrolase (FAAH), that is inhibited competitively by hydroxyanandamides (HAEAs) generated from AEA by lipoxygenase activity. Among these derivatives, 15-HAEA has been shown to be an effective (Ki ∼0.6 μM) FAAH inhibitor, that blocks also type-1 cannabinoid receptor (CB1R) but not other components of the “endocannabinoid system (ECS)”, like the AEA transporter (AMT) or CB2R. Here, we extended the study of the effect of 15-HAEA on the AEA synthetase (NAPE-PLD) and the AEA-binding vanilloid receptor (TRPV1), showing that 15-HAEA activates the former (up to ∼140% of controls) and inhibits the latter protein (down to ∼70%). We also show that 15-HAEA halves the synthesis of 2-AG and almost doubles the transport of this compound across the membrane. In addition, we synthesized methyl and acetyl derivatives of 15-HAEA (15-MeOAEA and 15-AcOAEA, respectively), in order to check their ability to modulate FAAH and the other ECS elements. In fact, methylation and acetylation are common biochemical reactions in the cellular environment. We show that 15-MeOAEA, unlike 15-AcOAEA, is still a powerful competitive inhibitor of FAAH (Ki ∼0.7 μM), and that both derivatives have negligible interactions with the other proteins of ECS. Therefore, 15-MeOAEA is a FAAH inhibitor more selective than 15-HAEA. Further molecular dynamics analysis gave clues to the molecular requirements for the interaction of 15-HAEA and 15-MeOAEA with FAAH.  相似文献   

12.
Investigations of the pathways involved in the metabolism of endocannabinoids have grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The in vivo biosynthesis of AEA has been shown to occur through several pathways mediated by N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD), a secretory PLA(2) and PLC. 2-AG, a second endocannabinoid is generated through the action of selective enzymes such as phosphatidic acid phsophohydrolase, diacylglycerol lipase (DAGL), phosphoinositide-specific PLC (PI-PLC) and lyso-PLC. A putative membrane transporter or facilitated diffusion is involved in the cellular uptake or release of endocannabinoids. AEA is metabolized by fatty acid amidohydrolase (FAAH) and 2-AG is metabolized by both FAAH and monoacylglycerol lipase (MAGL). The author presents an integrative overview of current research on the enzymes involved in the metabolism of endocannabinoids and discusses possible therapeutic interventions for various diseases, including addiction.  相似文献   

13.
Previously, we reported that inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in both androgen-sensitive (LNCaP) and androgen-refractory (PC3) human prostate cancer cells within hours of treatment [Proc. Natl. Acad. Sci. USA 95 (1998) 13182-13187]. Apoptosis was prevented by exogenous 5(S)-HETE, a product of 5-lipoxygenase, indicating a role of this eicosanoid as an essential survival/anti-apoptotic factor for prostate cancer cells. However, nothing was clearly known about details of the underlying molecular mechanisms or events mediating the induction of fulminating apoptosis in these cells. This report documents the fact that inhibition of arachidonate 5-lipoxygenase induces rapid activation of c-Jun N-terminal kinase (JNK) in human prostate cancer cells which is prevented by the 5-lipoxygenase metabolite, 5(S)-HETE. Activation of JNK is unaffected by the cell-permeable tetra-peptide inhibitors of caspase 8 or caspase 3 (IETD-FMK and DEVD-FMK), though these inhibitors effectively blocked apoptosis triggering, suggesting that activation of JNK is independent or upstream of caspase activation. Both 5-lipoxygenase inhibition-induced activation of JNK and induction of apoptosis are prevented by curcumin, an inhibitor of JNK-signaling pathway. Apoptosis is also blocked by SP600125, a specific inhibitor of JNK activity, indicating that JNK activity is required for the induction of apoptosis in these cells. These findings suggest that the metabolites of arachidonate 5-lipoxygenase promote survival of prostate cancer cells involving down-regulation of stress-activated protein kinase.  相似文献   

14.
The purpose of this review is to discuss the cellular synthesis and inactivation of two putative endogenous ligands of the cannabinoid receptor, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG). Both ligands are synthesized by neurons and brain tissue in response to increased intracellular calcium concentrations. Both ligands are substrates for fatty acid amide hydrolase (FAAH). Both AEA and 2-AG bind to the neuronal form of the cannabinoid receptor (CB1). AEA binds the receptor with moderate affinity and has the characteristics of a partial agonist, whereas, 2-AG binds with low affinity but exhibits full efficacy. Two possible physiological roles of the endocannabinoids and the CB1 receptor are discussed: the regulation of gestation and the regulation of gastrointestinal motility.  相似文献   

15.
A murine killer T cell line, G-CTLL 1, whose proliferation depends on the presence of interleukin 2 (IL-2), was used to analyze the mechanism of IL-2 action with respect to sterol synthesis and arachidonate metabolism. De novo sterol synthesis was substantially enhanced much earlier than DNA synthesis, and the rate reached a maximum at 13 hr after the addition of IL-2. Compactin, which is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase, the enzyme in the rate-limiting step of the sterol synthesis), inhibited the IL-2-induced DNA synthesis. The addition of mevalonate, the product of HMG CoA reductase, prevented the inhibition of DNA synthesis by compactin, suggesting that the supply of a sufficient amount of sterol is an essential prerequisite for IL-2 action. The IL-2-induced DNA synthesis was also inhibited by AA861, a specific inhibitor of arachidonate 5-lipoxygenase, and by other lipoxygenase inhibitors such as nordihydroguaiaretic acid and esculetin. In contrast, indomethacin, an inhibitor of arachidonate cyclooxygenase, had no effect. These findings suggest that synthesis of 5-lipoxygenase products is also a prerequisite. The inhibition of DNA synthesis was effectively inhibited only when compactin or lipoxygenase inhibitors were added early enough to block the synthesis of sterols or 5-lipoxygenase products; addition of the reagents after 3 hr decreased the inhibition with time. Therefore, about 3 hr after the addition of IL-2, several drastic intracellular changes are assumed to begin and to lead to DNA synthesis.  相似文献   

16.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

17.
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.  相似文献   

18.
The effects of a single oral administration of acetylsalicylic acid (500 mg), indomethacin (50 mg) and piroxicam (40 mg) to healthy volunteers on functional and biochemical parameters of platelets, polymorphonuclear (PMN) and mononuclear (MNL) leukocytes were evaluated. Blood was collected before and two hours after the drug intake and blood cells separated according to conventional techniques. The considered drugs almost completely suppressed the aggregation of platelets, whereas they did not affect either PMN and MNL aggregation. Superoxide anion generation by leukocytes was (PMN), or no effect (MNL) was observed after piroxicam and indomethacin respectively. The formation of arachidonate metabolites via the 5-lipoxygenase pathway by PMN and MNL challenged with 10 microM A23187 was unchanged following aspirin and indomethacin. In this respect a selective increase of 5-HETE and LTC4 synthesis by MNL only was detected after piroxicam administration. The three drugs similarly reduced TXB2 synthesis by platelets and PMN (-80% for aspirin and indomethacin, and -40% for piroxicam). As far as MNL is concerned, aspirin inhibited this metabolite by 80%, while indomethacin reduced it by 40% only. In contrast piroxicam increased TXB2 synthesis by stimulated MNL. It can be concluded that the considered antiinflammatory drugs 1) differently affect the cyclooxygenase enzyme in platelets and leukocytes; 2) at variance with the situation in platelets, the inhibition of thromboxane formation by leukocytes is not related to modifications of cellular function; 3) the formation of arachidonate metabolites via the 5-lipoxygenase pathway is affected by piroxicam only.  相似文献   

19.
N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the two proposed endogenous agonists of cannabinoid receptors, and the putative AEA biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), were identified in bovine retina by means of gas chromatography-electron impact mass spectrometry (GC-EIMS). This technique also allowed us to identify N-docosahexanoylethanolamine (DHEA) and 2-docosahexanoylglycerol (2-DHG), two derivatives of docosahexaenoic acid (DHA), one of the most abundant fatty acids esterified in retina phospholipids and necessary for optimal retinal function. N-Docosahexaenoylphosphatidylethanolamine (NDHPE), the potential biosynthetic precursor for DHEA, was also found. The fatty acid composition of the sn-1 and sn-2 positions of bovine retina's most abundant phospholipid classes, also determined here, were in agreement with a phospholipid-dependent mechanism for 2-AG, 2-DHG, AEA, and DHEA biosynthesis, as very high levels of polyunsaturated fatty acids, including DHA, were found on the sn-2 position of phosphatidylcholine (PC) and -ethanolamine (PE), and measurable amounts of di-docosahexanoyl-PC and -PE, two potential biosynthetic precursors of NDHPE, were detected. Accordingly, we found that isolated particulate fractions from bovine retina could release AEA and DHEA in a time-dependent fashion. Finally, a fatty acid amide hydrolase (FAAH)-like activity with subcellular distribution and pH dependency similar to those reported for the brain enzyme was also detected in bovine retina. This activity was inhibited by FAAH inhibitors, phenylmethylsulfonyl fluoride and arachidonoyltrifluoromethylketone, and appeared to recognize DHEA with a lower efficiency than AEA. These data indicate that AEA and its congeners may play a physiological role in the mammalian eye.  相似文献   

20.
A study was made of the mechanisms underlying production of resting active tension in guinea pig tracheal smooth muscle and the changes with active sensitization to ovalbumin. The same types of tissues were also analyzed as to their responses to arachidonate. Responses for each tissue were expressed in relation to a scale between zero active tension and maximum active tension in response to carbachol. A variety of selective and nonselective inhibitors of cyclooxygenase or 5-lipoxygenase were shown to affect active tension in a manner consistent with the conclusion that a cyclooxygenase product, probably prostaglandin F(PGF2 alpha) and not thromboxanes was chiefly responsible. The inhibition of active tension produced by cyclooxygenase inhibition was shown to be related to the initial active tension, such that tissues with greater resting active tension had greater reductions in tone. No differences of major importance were found as to the mechanisms underlying tone production in control and sensitized tissues. The tension changes in response to exogenous arachidonate were also found to be dependent on the initial level of active tension; when this was low, tension increased, when it was high, tension decreased or did not change. Effects of inhibitors on these responses were again consistent with the conclusion that primarily excitant prostaglandins, not thromboxanes, were produced. Some suggestive evidence for production of excitatory and inhibitory nonprostaglandin metabolites was obtained. No difference of major importance between control and sensitized tissues was observed in the magnitude or underlying mechanism of production of active tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号