首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Kessel, R. W. I. (Rutgers, The State University, New Brunswick, N.J.), Henry H. Freedman, and Werner Braun. Relation of polysaccharide content to some biological properties of endotoxins from mutants of Salmonella typhimurium. J. Bacteriol. 92:592-596. 1966.-Endotoxins were extracted by the phenol-water procedure from a variety of Salmonella typhimurium mutants with known differences in the composition of their cell wall polysaccharides. The lethality of these preparations for mice proved to be correlated with the complexity of the polysaccharide: endotoxin from the smooth parent strain and from rough strains with several sugars attached to the heptose-phosphate backbone were of high toxicity, whereas endotoxin from a mutant possessing only glucose attached to the heptose-phosphate backbone was less toxic, and endotoxin from a mutant possessing the backbone only was least toxic. All of these mutants yielded endotoxins that were equally capable of protecting mice against subsequent challenge with Pseudomonas aeruginosa. Material obtained from a heptoseless mutant by the phenol-water method proved to be neither toxic nor protective. The apparent dissociation of biological properties that can be achieved with the aid of endotoxin preparations from certain mutants is discussed in terms of possible mechanisms.  相似文献   

2.
A heptose-deficient mutant of Escherichia coli has been isolated and from it a glycolipid, consisting of lipid A and 2-keto-3-deoxyoctonate (KDO), has been extracted with diisobutylketone-acetic acid-water. Based on beta-hydroxymyristic acid, the extractable glycolipid accounts for a major portion of the total lipid A in this mutant. A glycolipid, purified from the lipid extract by a combination of silicic acid and Sephadex LH-60 chromatography, contains glucosamine, phosphate, KDO, acetyl groups, and fatty acids in the following molar ratios: 1:2:2:1.7:5. These components account for over 80% of the lipid by weight. The fatty acid pattern of the glycolipid is typical of lipid A, the major component being beta-hydroxymyristic acid. The lipid also contains an amino sugar which appears to be 4-amino-4-deoxyarabinose. With the use of an ion-exchange paper chromatographic technique, gram-negative bacteria can be rapidly screened for the presence of this glycolipid. The mutant is believed to have a leaky defect in either biosynthesis of heptose or its incorporation into lipopolysaccharide. The lipopolysaccharide from the mutant contains only about a third as much heptose, glucose, and galactose as the parent CR34, a K-12 derivative. Chemical analysis and phage typing suggest that CR34 contains an incomplete core polysaccharide devoid of glucosamine.  相似文献   

3.
Garcia GG  Amoako KK  Xu DL  Inoue T  Goto Y  Shinjo T 《Microbios》1999,100(397):175-179
The endotoxins from two recently-classified subspecies of Fusobacterium, namely F. necrophorum subsp. necrophorum and F. necrophorum subsp. funduliforme, were compared. Chemical analysis of the isolated endotoxins revealed that they were clearly different. Distinct levels of polysaccharides were demonstrated. The endotoxins isolated were devoid of heptose and 3-deoxy-D-manno-octulosonate (KDO). The endotoxins of F. n. necrophorum and F. n. funduliforme contained lipid A in a ratio of 4:1 which may account for the variations in their virulence.  相似文献   

4.
Lipopolysaccharide (LPS) was isolated and purified from Wolinella recta ATCC 33238 by the phenol-water procedure and RNAase treatment. The sugar components of the LPS were rhamnose, mannose, glucose, heptose, 2-keto-3-deoxyoctonate (KDO) (3-deoxy-D-manno-octulosonate) and glucosamine. The degraded polysaccharide prepared from LPS by mild acid hydrolysis was fractionated by Sephadex G-50 gel chromatography into three fractions: (1) a high-molecular-mass fraction, eluting just behind the void volume, consisting of a long chain of rhamnose (22 mols per 3 mols of heptose residue) with attached core oligosaccharide; (2) a core oligosaccharide containing heptose, glucose and KDO, substituted with a short side chain of rhamnose; (3) a low-molecular-mass fraction containing KDO and phosphate. The main fatty acids of the lipid A were C12:0, C14:0, 3-OH-C14:0 and 3-OH-C16:0. The biological activities of the LPS were similar to those of Salmonella typhimurium LPS in activation of the clotting enzyme of Limulus amoebocytes, the Schwartzman reaction and mitogenicity for murine lymphocytes, although all the biological activities of lipid A were lower than those of intact LPS.  相似文献   

5.
The chemical properties and the general biological activities of lipopolysaccharide (LPS) and Boivin-type endotoxin obtained respectively by phenol-water and trichloroacetic acid extraction from Yersinia enterocolitica serotypes 03 and 09 were studied. The yield of LPS from the O9 strain was about 10% of the O3 strain possibly because of the lower solubility of O9-LPS in aqueous phase. However, the chemical composition of O9-LPS was similar to that of O3-LPS in the proportions of reducing sugar, glucosamine, heptose, KDO, and lipid A. In pyrogenicity and local Shwartzman reactivity in rabbits and lethality for mice, there was also no difference between O3 and O9-LPS. The anthrone-positive carbohydrate and lipid A contents of Boivin-type endotoxin from O3 were higher than those of the endotoxin from O9. The biological activities of Boivin-type endotoxin from O3 were also remarkably higher than those of the endotoxin from O9. It seems that endotoxin of Y. enterocolitica serotype O3 may play an important role in infection by this organism.  相似文献   

6.
Summary Highly refined, disaggregated endotoxic glycolipids (B5) from heptose-less (Re) mutant Salmonella typhimurium quantitatively converted to nontoxic (lethality for chick embryos) and nonpyrogenic (fever in rabbits) lipid A by treatment with boiling 0.1 N HCl (B5-HC1). Nontoxic B5-HCl, like toxic B5, caused regression of line-10 tumors and elimination of lymph node metastasis in 27 of 32 (84%) syngeneic strain 2 guinea pigs at a dosage of 150 g. At this dosage, toxic B5 led to a cure in 54 of 67 (81%) tumor-bearing animals. All cured animals rejected a second line-10 tumor cell transplant. This activity depended on combining the toxic or nontoxic endotoxins with mycobacterial trehalose mycolate (P3) and an essentially nontoxic peptide-containing side-fraction (ACP) recovered during the isolation of B5. In contrast to toxic B5 or endotoxins in general, nontoxic B5-HCl did not cause endotoxic shock when combined with adjuvant dipeptide (MDP) and injected IV into guinea pigs. Chemical analysis showed that the phosphate content of nontoxic B5-HCl was about one-half that observed in toxic B5 or in toxic KDO-free lipid A, which was obtained by treating toxic B5 with sodium acetate at pH 4.5 at 100° C (B5-pH 4.5). The molar ratio of glucosamine: phosphorus: fatty acids was 2:1:4 for nontoxic B5-HCl and was 2:2:4 for toxic B5-pH 4.5. These results demonstrate that endotoxic extracts could be selectively detoxified while retaining antitumor properties. Thus, nontoxic B5-HCl may be a potential candidate for immunotherapy of human cancer.Presented at the 72nd Annual Meeting of the American Association for Cancer Research, 1981, and abstract no. 1123 published in the Proceedings of the American Association for Cancer Research, Vol. 22, 1981 Abbreviations used in this paper: ACP, a nontoxic acetone-chloroform precipitated side-fraction of endotoxin that contains (an) ingredient(s) necessary for tumor regression of line-10 tumors in strain 2 guinea pigs; ReGl, endotoxic glycolipids from Re mutant gram-negative bacteria; ReGl-PCP, ReGl extracted with phenol-chloroform-petroleum ether (PCP); B5, refined endotoxin, free of phospholipids, divalent cations and disaggregated; B5-HCl, nontoxic lipid A prepared from B5 by treatment with hydrochloric acid; B5-pH 4.5, toxic lipid A prepared from B5 by treatment with sodium acetate at pH 4.5; lipid A, hydrochloric acid or sodium acetate hydrolysate of ReGl-PCP or B5; MDP, N-acetyl-muramyl-l-seryl-d-isoglutamine; KDO, keto-3-deoxyoctonate  相似文献   

7.
8.
Kim CH 《Molecules and cells》2003,15(2):226-232
Invasion of host cells is essential for the pathogenicity of Salmonella. The author's group has recently reported the cloning of the rfaE gene of Salmonella typhimurium, previously implicated in biosynthesis of the lipopolysaccharide (LPS)-inner core [Jin et al. (2001); Kim (2002)]. The product of the rfaE gene is involved in ADP-L-glycero-D-manno-heptose biosynthesis. rfaE mutants synthesize heptose-deficient LPS (Re-LPS) consisting only of lipid A and 3-deoxy-D-manno-octulosonic acid (KDO). Mutants that make incomplete LPS are rough mutants and "deep-rough" mutants affected in the heptose region of the inner core have reduced growth rate and increased sensitivity to high temperature. Complementation of S. typhimurium rfaE mutant strain SL1102 (rfaE543) with rfaE demonstrated conclusively that this gene restored the smooth phenotype, and the LPS produced by the complemented strain was indistinguishable from that of wild type smooth strains. In vitro infection experiments showed that complementation with rfaE permitted invasion of human Chang epithelial cells, larynx epidermal carcinoma HEp-2 cells and intestinal epithelial Henle-407 cells. These data imply that the structure of the LPS that is synthesized is critical for Salmonella invasiveness.  相似文献   

9.
The basis of the biologic responses of C3H/HeJ mice to endotoxin administration in relation to the structural linkages in the lipid A portion of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa and Escherichia coli were investigated. P. aeruginosa LPS was found to be immunogenic, mitogenic, and toxic, but not lethal, in C3H/HeJ mice. The observed mitogenicity in spleen cells was directed toward immunoglobulin- (Ig) bearing cells, was present in response to isolated and solubilized lipid A, and was inhibitable by polymixin B. The P. aeruginosa LPS was chemically analyzed in order to define its composition and exclude the presence of contaminating proteins being responsible for the biologic responses of C3H/HeJ mice that were observed. Structural analysis of the linkages of the fatty acids to the glucosamine backbone in the lipid A of P. aeruginosa and E. coli revealed similarities in terms of the ratio of hydroxy fatty acids to straight chain fatty acids and the way in which these 2 types of fatty acids were linked to the backbone. Differences were seen in the carbon chain length of the fatty acid substituents, and the substituent on the hydroxy fatty acid that is directly ester linked to the glucosamine backbone. These data indicate that the refractivity of C3H/HeJ mice to the biologic effects after the administration of Gram-negative endotoxins may be limited to enterobacterial LPS. Those differences we found in the chain length and/or linkages of the fatty acid substituents in the lipid A portion of the LPS between P. aeruginosa and E. coli may be sufficient to render C3H/HeJ mice responsive to the biologic effects of nonenterobacterial endotoxins.  相似文献   

10.
Bacterial lipopolysaccharides (LPS) are potent endotoxins that are thought to be involved in the pathogenesis of Gram-negative septicemia. The liver is known to be the primary organ responsible for the clearance of LPS from the systemic circulation in mammals. In this work, 125I-labeled LPS have been used in a filtration assay for the specific binding of LPS to intact rat hepatocytes. Eight S-form (smooth) LPS with complete O-specific polysaccharide chains isolated from different O-serotypes of Salmonella and Escherichia coli as well as nine R-form (rough) LPS isolated from Salmonella mutants deficient in synthesis of their core oligosaccharides were used in this study. All 125I-labeled S-form LPS and R-form LPS, except Re, show specific binding to isolated hepatocytes. The binding is saturable, is inhibited with excess unlabeled homologous or heterologous LPS but not lipid A, and is trypsin sensitive. L-Glycero-D-mannoheptose (heptose), a constituent of the inner core region of almost all LPS, is a potent inhibitor of the specific binding of 125I-labeled Rb2 LPS, whereas other monosaccharides, including 3-deoxy-D-manno-2-octulosonic acid (KDO), have weak or negligible inhibitor activity. These results strongly suggest the presence of a lectin-like receptor for the LPS inner core region (heptose-KDO region) on the plasma membrane of rat hepatocytes.  相似文献   

11.
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design.  相似文献   

12.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

13.
A highly purified bacterial lipopolysaccharide (LPS) preparation was exposed in water to megadoses of ionizing radiation from a 60Co source. As evidenced by electrophoresis, the radiation treatment progressively degraded the lipopolysaccharide molecules by removing first the O-side chain units and then components of the R-core. Chemical analysis of the irradiated (LPS) preparations showed that, in accord with the structural changes, the most profound effects of ionizing radiation occurred in the hydrophilic oligo/polysaccharide moieties (R-core and O-side chain). Progressively higher doses of radiation degraded the simple sugars in decreasing order of galactose, galactosamine, glucosamine, glucose, and heptose. The R-core component 2-keto-3-deoxyoctonate was the most "resistant" sugar derivative to ionizing radiation. Due to its central position in the LPS aggregates in water, even at comparatively high doses of radiation the hydrophobic lipid A moiety of endotoxin was less affected than the sugar components. Of the fatty acids of lipid A, however, either partial conversion of beta-hydroxymyristic acid into myristic acid or selective loss of the former occurred. The observed structural and chemical changes of LPS are consistent with the effect of active oxygen radicals of radiolysis. In addition, the extensive physicochemical changes explain the altered biological reactivity of radiation-treated endotoxins.  相似文献   

14.
The acyl chain packing of various endotoxins and phospholipids was monitored via the main wide-angle reflection between 0.410 and 0.460 nm by wide-angle X-ray scattering (WAXS) and via the absorption band of the symmetric stretching vibration of the methylene groups v(s)(CH(2)) around 2849 to 2853 cm(-1) by Fourier-transform infrared spectroscopy. The lipids investigated included various rough mutant (R) and smooth form (S) lipopolysaccharides (LPS) differing in the length of the sugar portion, lipid A, the "endotoxic principle" of LPS, and various saturated and unsaturated phospholipids with different head groups under a near physiological (>/=85%) water content. The packing density of the saturated endotoxin acyl chains is lower than those of saturated phospholipids but similar to those of monounsaturated phospholipids, each in the gel phase. The hydrophobic moiety of endotoxins thus exhibits significant conformational disorder already in the gel phase. The acyl chain packing of the endotoxins decreases with increasing length of the sugar chain lengths, which seems to be relevant to the observed differences in biological activity. For Re-LPS with different counterions (salt forms), in the presence of externally added cations or at reduced water content (50%), no change of the acyl chain packing density is deduced in the X-ray data, although the FT-IR data indicate its increase. The position of the v(s)(CH(2)) vibration is, thus, only a relative measure of lipid order, in particular when lipids with different head groups and in the presence of external agents are compared.  相似文献   

15.
The interaction of bacterial endotoxins [lipopolysaccharide (LPS) and the 'endotoxic principle' lipid A], with high-density lipoprotein (HDL) from serum was investigated with a variety of physical techniques and biological assays. HDL exhibited an increase in the gel to liquid crystalline phase transition temperature Tc and a rigidification of the acyl chains of the endotoxins as measured by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The functional groups of the endotoxins interacting with HDL are the phosphates and the diglucosamine backbone. The finding of phosphates as target groups is in accordance to measurements of the electrophoretic mobility showing that the zeta potential decreases from -50 to -60 mV to -20 mV at binding saturation. The importance of the sugar backbone as further target structure is in accordance with the remaining negative potential and competition experiments with polymyxin B (PMB) and phase transition data of the system PMB/dephosphorylated LPS. Furthermore, endotoxin binding to HDL influences the secondary structure of the latter manifesting in a change from a mixed alpha-helical/beta-sheet structure to a predominantly alpha-helical structure. The aggregate structure of the lipid A moiety of the endotoxins as determined by small-angle X-ray scattering shows a change of a unilamellar/inverted cubic into a multilamellar structure in the presence of HDL. Fluorescence resonance energy transfer data indicate an intercalation of pure HDL, and of [LPS]-[HDL] complexes into phospholipid liposomes. Furthermore, HDL may enhance the lipopolysaccharide-binding protein-induced intercalation of LPS into phospholipid liposomes. Parallel to these observations, the LPS-induced cytokine production of human mononuclear cells and the reactivity in the Limulus test are strongly reduced by the addition of HDL. These data allow to develop a model of the [endotoxin]/[HDL] interaction.  相似文献   

16.
An analysis of which component of lipopolysaccharides (LPS), the lipid or the polysaccharide (PS), is active in stimulating the murine granulopoietic system has been performed. LPS with different structures, isolated from different mutant strains of Salmonella and chemical degradation products of lipopolysaccharides have been used. Lipid A obtained by acid hydrolysys of the LPS and complexed to bovine serum albumin (BSA) (lipid A-BSA) was shown to be active in generating serum colony stimulating factor (CSF) and in increasing the splenic colony forming cells (CFC) levels, although it was less active than the parent LPS. The polysaccharide (PS) showed no significant activity at the concentrations used. LPS (glycolipids) from R mutants of Salmonella minnesota were active to the same extent as the LPS. The fact that even the most defective LPS from the R mutant R595 which contains lipid A and KDO only is a potent endotoxin, points unequivocally, to lipid A, as the active principle in stimulating the granulopoietic system.  相似文献   

17.
A partition chromatographic procedure utilizing a cationic exchange resin column in the Li+ form and 90% ethanol as the mobile phase was employed to quantify 3-deoxy-d-manno-octulosonic acid (KDO) and l-glycero-d-manno-heptose in the lipopolysaccharides (LPS) of Re and RdP? rough mutants of Salmonella minnesota. In a standard mixture of monosaccharides, KDO eluted shortly after the void volume and heptose eluted after the neutral hexoses. Mild acid treatment of either the Re or RdP? LPS with 0.16 n methanesulfonic acid in the presence of Dowex 50-X8 resin (H+ form) released more than 80% of the KDO residues within 15 min. The heptose of the RdP? LPS, first detected after 90 min of hydrolysis, increased gradually to a maximum level at 12 h. A secondary gradual increase in KDO became apparent during the heptose release. The weight contents of these two monosaccharides based upon aheir maximum values detected during hydrolysis were 20.3 ± 0.6% KDO, for the Re LPS, and 13.8 ± 0.4% KDO and 12.0 ± 0.4% heptose, for the RdP? LPS. The relationship between the kinetics of release of KDO and heptose and the nature of the linkages involving these two monosaccharides are discussed.  相似文献   

18.
The interaction of selected endotoxin preparations (lipid A from Erwinia carotovora and LPS Re and Ra from Salmonella enterica sv. Minnesota strains R595 and R60, respectively) with selected bile acids was investigated biophysically. Endotoxin aggregates were analyzed for their gel-to-liquid crystalline phase behavior, the type of their aggregates, the conformation of particular functional groups, and their Zeta potential in the absence and presence of the bile acids by applying Fourier-transform infrared spectroscopy, differential scanning calorimetry, measurements of the electrophoretic mobility, and synchrotron radiation X-ray scattering. In addition, the ability of the endotoxins to induce cytokines in human mononuclear cells was tested in the absence and presence of varying concentrations of bile acids. The data show that the endotoxin:bile acid interaction is not governed by Coulomb forces, rather a hydrophobic interaction takes place. This leads to an enhanced formation of the inherent cubic aggregate structures of the endotoxins, concomitant with a slight disaggregation, as evidenced by freeze-fracture electron microscopy. Parallel to this, the addition of bile acids increased the bioactivity of lipid A and, to a lower degree, also that of the tested rough mutant LPS at lower concentrations of the endotoxin preparation, a finding similar as reported for the interaction of other agents such as hemoglobin. These data imply that there are general mechanisms that govern the expression of biological activities of endotoxins.  相似文献   

19.
The lipopolysaccharides (LPSs) from Rhizobium trifolii ANU843 and several transposon (Tn5) symbiotic mutants derived from ANU843 were isolated and partially characterized. The mutant strains are unable to induce normal root hair curling (Hac- phenotype) or nodulation (Nod-phenotype) in clover plants. The LPSs from the parent and mutants are very similar in composition. Analysis by PAGE shows that the LPSs consist of higher and lower molecular weight forms. The higher molecular weight form of the LPSs exists in several aggregation states when PAGE is done in 0.1% SDS but collapses into a single band when PAGE is done in 0.5% SDS. Mild acid hydrolysis of all the LPSs releases two polysaccharides, PS1 and PS2. Immunoblots of the PAGE gels and enzyme linked immunosorbant assay inhibition assays show that the PS1 fractions contain the immunodominant sites of the LPSs and that these sites are present in the higher molecular weight form of the LPSs. All the PS1 fractions contain methylated sugars, 2-amino-2,6-dideoxyhexose, heptose, glucuronic acid, and 2-keto-3-deoxyoctonic acid (KDO). All the PS2 fractions contain galacturonic acid, mannose, galactose, and KDO. The PS2 fractions have a molecular weight of about 700. The KDO is present at the reducing end of both the PS1 and the PS2 fractions. The PS1 and PS2 fractions from the mutants contain more glucose than these fractions from the parent. The LPS from a deletion mutant contains less acyl groups than the other LPSs. Immunoblots of the LPSs show that the parent and nod A mutant LPSs contain an additional antigenic band which is not observed in the other LPSs.  相似文献   

20.
A modified methylation analysis is described which allows the elucidation of the structure of the inner core region [heptose/3-deoxy-D-manno-2-octulosonic acid (KDO)] of enterobacterial lipopolysaccharides (LPS) of Salmonella minnesota rough mutants (Re, strain R595; and Rd2P-, strain R4). Methylation, carboxyl-reduction, remethylation, hydrolysis, carbonyl-reduction, and acetylation of the Re-mutant LPS yielded the 2,6-di-O-acetyl and 2,4,6-tri-O-acetyl derivatives of partially methylated 3-deoxyoctitol in equimolar amounts, indicating the presence of a terminal and a 4-linked pyranosidic KDO residue. For Rd2P- LPS, the hydrolysis step involved 0.1M trifluoroacetic acid at 100 degrees for 1 h which cleaved ketosidic linkages, and the final products included the foregoing acetyl derivatives in the molar ratio of 1:02 and a partially methylated and acetylated 3-deoxyoctitol derivative which was substituted at O-5 by a methylated heptopyranosyl residue. Trideuteriomethylation of the latter product followed by methanolysis and acetylation gave 5-O-acetyl-3-deoxy-1,7,8-tri-O-methyl-2,4,6-tri-O-trideuteriomethyl++ +-D- glycero-D-talo/galacto-octitol and 1,5-di-O-acetyl-2,3,4,6,7-penta-O-methyl-L-glycero-D-manno-heptitol++ +. These results prove the presence of a (2----4)-linked KDO disaccharide in Re LPS and show that the core region of Rd2P- LPS contains a terminal alpha-L-glycero-D-manno-heptopyranosyl group and a non-substituted, a 4-O-, and a 4,5-di-O-substituted pyranosidic KDO residue in the molar ratios 1:1:0.2:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号