首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sites for the β-oxidation of fatty acids in avocado (Persea americana L.) mesocarp exist. One site is the microbody, the other the mitochondrion. It is apparent that the mitochondrial membrane barrier, which remains intact after sucrose density gradient centrifugation, prevents rapid access of acyl CoA substrates to matrix β-oxidation sites. Thus, intact mitochondria showed little β-oxidation enzyme activity. Rupturing of the mitochondrial membrane allowed rapid access of the acyl CoA substrates to matrix sites. Consequently, in ruptured mitochondria, high O2-oxidation enzyme activities were measured. O2 uptake studies further distinguished the two organellar sites of β-oxidation. During palmitoyl CoA oxidation, O2 uptake was reduced by catalase and increased by KCN in the microbodies, whilst mitochondrial O2 uptake was unaffected by catalase and reduced by KCN. This reflected the differing fates of FADH2, produced during the first β-oxidation step, in the two organelles. In addition, only the mitochondrial β-oxidation of fatty acids was carnitine-dependent.  相似文献   

2.
W.R. Frisell  V.M. Randolph 《BBA》1973,292(2):360-365
In phosphorylating mitochondria, isolated in 0.25 M sucrose and suspended in a glycylglycine-KC1 medium at pH 7.4, the N-methyl group of sarcosine is oxidized to formaldehyde, formate, and CO2. The initial rate of O2 uptake in this system is only about half as great as with phosphate-washed mitochondria, in which the N-methyl carbon is oxidized only to the level of “active formaldehyde” and can be recovered as serine-β-carbon and/or formaldehyde. In the glycylglycine-KC1 medium, the O2 uptake with sarcosine occurs in a biphasic manner and the initial slower rate can be extended by the addition of Mg2+, and ADP, AMP, or ATP. O2 uptake is similarly restrained by ADP in mitochondria buffered with imidazole or pyrophosphate. The ADP effect is not observed in the presence of dinitrophenol. The patterns of O2 uptake obtained with ADP in these various media are not altered when the oxidation of the formaldehyde, derived from the N-methyl group, is suppressed by the addition of either semicarbazide or rotenone. With dimethylglycine, another component of the “1-C cycle”, the initial rate of oxidation in glycylglycine or imidazole is enhanced by ADP rather than being decreased. These results together with appropriate coenzyme analyses suggest that reactions of “one carbon compounds” can provide sensitive markers for assessing compartition of cofactors such as the pyridine nucleotides, flavins, and folates in the mitochondrial matrix.  相似文献   

3.
It is reported here on random acceleration molecular dynamics (RAMD) simulations with the 2GF3 bacterial monomeric sarcosine oxidase (MSOX), O2, and furoic acid in place of sarcosine, solvated by TIP3 H2O in a periodic box. An external tiny force, acting randomly on O2, accelerated its relocation, from the center of activation between residue K265 and the si face of the flavin ring of the flavin adenine dinucleotide cofactor, to the surrounding solvent. Only three of the four O2 gates previously described for this system along a composite method technique were identified, while two more major O2 gates were found. The RAMD simulations also revealed that the same gate can be reached by O2 along different pathways, often involving traps for O2. Both the residence time of O2 in the traps, and the total trajectory time for O2 getting to the solvent, could be evaluated. The new quick pathways discovered here suggest that O2 exploits all nearby interstices created by the thermal fluctuations of the protein, not having necessarily to look for the permanent large channel used for uptake of the FADH cofactor. To this regard, MSOX resembles closely KijD3 N‐oxygenase. These observations solicit experimental substantiation, in a long term aim at discovering whether gates and pathways for the small gaseous ligands inside the proteins are under Darwinian functional evolution or merely stochastic control operates.  相似文献   

4.
Oxygen exchange in leaves in the light   总被引:30,自引:20,他引:10       下载免费PDF全文
Photosynthetic O2 production and photorespiratory O2 uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O2, O2 production increased linearly with light intensity. At low O2 or low CO2, O2 production was suppressed, indicating that increased concentrations of both O2 and CO2 can stimulate O2 production. At the CO2 compensation point, O2 uptake equaled O2 production over a wide range of O2 concentrations. O2 uptake increased with light intensity and O2 concentration. At low light intensities, O2 uptake was suppressed by increased CO2 concentrations so that O2 uptake at 1,000 microliters per liter CO2 was 28 to 35% of the uptake at the CO2 compensation point. At high light intensities, O2 uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO2 was 75% or more of the rate of O2 uptake at the compensation point. The response of O2 uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O2 uptake to O2 concentration saturated at about 30% O2 in high light and at a lower O2 concentration in low light. O2 uptake was also observed with the C4 plant Amaranthus edulis; the rate of uptake at the CO2 compensation point was 20% of that observed at the same light intensity with the C3 species, and this rate was not influenced by the CO2 concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O2.  相似文献   

5.
Summary Simultaneous measurements of ventilatory frequency, tidal volume, O2 uptake, CO2 output and cardiac frequency were made in the diamondback water snake,Natrix rhombifera while breathing hypoxic (15% to 5% O2 in N2) or hypercarbic (2% to 10% CO2 and 21% O2 in N2) gases. The snakes responded to hypoxia by increasing tidal volume and decreasing ventilatory frequency resulting in little change in ventilation (50% increase at 5% inspired O2), or O2 uptake and only a light increase in CO2 output. Hypercarbia to 4.2% inspired CO2 resulted in a slight hyperventilation but ventilation was depressed at 6.3% inspired CO2 and became erratic at higher concentrations. The resting rate of O2 uptake was maintained throughout hypercapnia. Heart rate increased during hypoxia and decreased during hypercapnia. Cutaneous O2 uptake increased during extreme hypoxia (5% inspired O2) and cutaneous CO2 output increased during hypercapnia, probably due to changes in the body-to-ambient gas gradients (Crawford and Schultetus, 1970). Both pulmonary oxygen uptake and ventilation were dramatically increased immediately following 10–15 min experimental dives. The increased ventilation was achieved primarily through an increased tidal volume.  相似文献   

6.
In this work, two protein systems, Kij3D? FMN? AKM? O2 and Kij3D? FMN? O2, made of KijD3 N‐oxygenase, flavin mononucleotide (FMN) cofactor, dTDP‐3‐amino‐2,3,6‐trideoxy‐4‐keto‐3‐methyl‐D ‐glucose (AKM) substrate, and dioxygen (O2), have been assembled by adding a molecule of O2, and removing (or not) AKM, to crystal data for the Kij3D? FMN? AKM complex. Egress of AKM and O2 from these systems was then investigated by applying a tiny external random force, in turn, to their center of mass in the course of molecular dynamics in explicit H2O. It turned out that the wide AKM channel, even when emptied, does not constitute the main route for O2 egress. Other routes appear to be also viable, while various binding pockets (BPs) outside the active center are prone to trap O2. By reversing the reasoning, these can also be considered as routes for uptake of O2 by the protein, before or after AKM uptake, while BPs may serve as reservoirs of O2. This shows that the small molecule O2 is capable of permeating the protein by exploiting all nearby interstices that are created on thermal fluctuations of the protein, rather than having necessarily to look for farther, permanent channels.  相似文献   

7.
Concurrent O2 evolution, O2 uptake, and CO2 uptake by illuminated maize (Zea mays) leaves were measured using 13CO2 and 18O2. Considerable O2 uptake occurred during active photosynthesis. At CO2 compensation, O2 uptake increased. Associated with this increase was a decrease in O2 release such that a stoichiometric exchange of O2 occurred. The rate of O2 exchange at CO2 compensation was directly related to O2 concentration in the atmosphere at least up to 8% (v/v).  相似文献   

8.
Creach E 《Plant physiology》1979,64(3):435-438
The enhanced dark CO2 uptake after a preillumination period under varying O2 concentrations has been measured with maize, a C4 plant. For comparison the same study has been conducted with tomato, a C3 plant. Increasing the O2 concentration during preillumination inhibits by 70% the subsequent dark CO2 uptake in tomato but stimulates 2-fold this CO2 uptake in maize. The O2 enhancement of CO2 uptake in maize is due to the enhancement of malate and aspartate synthesis. The percentages of radioactivity incorporated in the C-4 of malate and aspartate vary from 74 to 87% when O2 concentration during preillumination is increased from 0 to 100%.  相似文献   

9.
Light-mediated Oxygen Uptake Measured in Wheat Etioplasts   总被引:1,自引:1,他引:0       下载免费PDF全文
An in vitro O2 assay was used to measure early response of wheat (Triticum aestivum L.) etioplasts to light. A transient photoinducible O2 uptake occurred when dark-grown etioplasts were initially exposed to light. The rate of inducible O2 consumption was dependent on both the intensity of light and the quantity of organelle protein present. Higher light intensities resulted in greater O2 utilization per minute, and a greater quantity of organelle protein in the sample resulted in an increased rate of O2 uptake under the same light intensity conditions. Experiments with various plant tissues as well as with mitochondrial respiratory inhibitors indicated that etioplasts are the organelles responsible for the photoinduced O2 uptake phenomenon. A preliminary action spectrum study revealed that wavelengths 640 to 680 nm resulted in maximum O2 uptake. This indicated the presence of an etioplast red light receptor pigment which induces O2 uptake in etioplasts.  相似文献   

10.
Photosynthetic o(2) exchange kinetics in isolated soybean cells   总被引:8,自引:8,他引:0       下载免费PDF全文
Light-dependent O2 exchange was measured in intact, isolated soybean (Glycine max. var. Williams) cells using isotopically labeled O2 and a mass spectrometer. The dependence of O2 exchange on O2 and CO2 was investigated at high light in coupled and uncoupled cells. With coupled cells at high O2, O2 evolution followed similar kinetics at high and low CO2. Steady-state rates of O2 uptake were insignificant at high CO2, but progressively increased with decreasing CO2. At low CO2, steady-state rates of O2 uptake were 50% to 70% of the maximum CO2-supported rates of O2 evolution. These high rates of O2 uptake exceeded the maximum rate of O2 reduction determined in uncoupled cells, suggesting the occurrence of another light-induced O2-uptake process (i.e. photorespiration).

Rates of O2 exchange in uncoupled cells were half-saturated at 7% to 8% O2. Initial rates (during induction) of O2 exchange in uninhibited cells were also half-saturated at 7% to 8% O2. In contrast, steady-state rates of O2 evolution and O2 uptake (at low CO2) were half-saturated at 18% to 20% O2. O2 uptake was significantly suppressed in the presence of nitrate, suggesting that nitrate and/or nitrite can compete with O2 for photoreductant.

These results suggest that two mechanisms (O2 reduction and photorespiration) are responsible for the light-dependent O2 uptake observed in uninhibited cells under CO2-limiting conditions. The relative contribution of each process to the rate of O2 uptake appears to be dependent on the O2 level. At high O2 concentrations (≥40%), photorespiration is the major O2-consuming process. At lower (ambient) O2 concentrations (≤20%), O2 reduction accounts for a significant portion of the total light-dependent O2 uptake.

  相似文献   

11.
C4 grasses of the NAD‐ME type (Astrebla lappacea, Eleusine coracana, Eragrostis superba, Leptochloa dubia, Panicum coloratum, Panicum decompositum) and the NADP‐ME type (Bothriochloa bladhii, Cenchrus ciliaris, Dichanthium sericeum, Panicum antidotale, Paspalum notatum, Pennisetum alopecuroides, Sorghum bicolor) were used to investigate the role of O2 as an electron acceptor during C4 photosynthesis. Mass spectrometric measurements of gross O2 evolution and uptake were made concurrently with measurements of net CO2 uptake and chlorophyll fluorescence at different irradiances and leaf temperatures of 30 and 40 °C. In all C4 grasses gross O2 uptake increased with increasing irradiance at very high CO2 partial pressures (pCO2) and was on average 18% of gross O2 evolution. Gross O2 uptake at high irradiance and high pCO2 was on average 3.8 times greater than gross O2 uptake in the dark. Furthermore, gross O2 uptake in the light increased with O2 concentration at both high CO2 and the compensation point, whereas gross O2 uptake in the dark was insensitive to O2 concentration. This suggests that a significant amount of O2 uptake may be associated with the Mehler reaction, and that the Mehler reaction varies with irradiance and O2 concentration. O2 exchange characteristics at high pCO2 were similar for NAD‐ME and NADP‐ME species. NAD‐ME species had significantly greater O2 uptake and evolution at the compensation point particularly at low irradiance compared to NADP‐ME species, which could be related to different rates of photorespiratory O2 uptake. There was a good correlation between electron transport rates estimated from chlorophyll fluorescence and gross O2 evolution at high light and high pCO2.  相似文献   

12.
A practical method for predicting the dissolved oxygen (DO) profile in a stream receiving biodegradable waste is presented. In this method the BOD (accumulated O2 uptake) curve is obtained using an open jug technique. The accumulated O2 uptake curve thus developed is employed in numerical integration with the physical reaeration data for the receiving stream to predict the DO profile in the stream. In the present study, the method was examined using 10-liter open jar reactors to obtain the O2 uptake curves, and the receiving stream was a 670-liter simulated stream apparatus which has been employed in previous studies on stream reaeration. The method was found to provide a fairly good prediction of the actual dissolved oxygen profile observed in the receiving stream. The effect of the reaeration constant, K2 )agitation effect(, on the kinetics of O2 uptake was also investigated and it was found that increased agitation (higher K2 value) caused some increase in the accumulated oxygen uptake (BOD) curve with most of the increase coming after the so-called “plateau” area in the O2 uptake curve, i.e., in the general case, after the low point along the DO sag curve.  相似文献   

13.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

14.
Summary Effects of temperature acclimation (5 or 25 °C for 2–4 weeks) and metamorphosis on oxygen uptake, acid-base balance and blood-O2 affinity have been investigated inAmbystoma tigrinum. The results differ from previous studies in three ways. (1) The transition from gilled to gill-less adults had no effect on the O2 affinity of blood. (2) Cold acclimation increased blood O2 affinity in neotenes and had no effect in adults. (3) O2 uptake increased, rather than decreased, after acclimation to a higher temperature. The results resemble previous studies also in three ways. (1) O2 uptake increased with the transition from gilled-neotenes to gill-less adults as did the dependence on air-breathing. (2) Metamorphosis resulted in CO2 retention and a fall in arterial pH. (3) The temperature coefficient of blood pH was about –0.014dpH/dT in vivo and in vitro. The physiological significance of the results is discussed with respect to the natural history, modes of breathing, and dependance on aerial respiration ofAmbystoma tigrinum.  相似文献   

15.
Auxin-mediated elongation growth of maize coleoptile segments is inhibited by reducing the O2 concentration in the incubation medium to GT 100 μmol . 1?1. The half-maximal elongation rate is reached at 40 μmol . 1?1 O2, i.e. about two orders of magnitude higher than with mitochondrial respiration. O2 uptake of the segments measured under similar conditions with an O2 electrode shows a very similar dependence on O2 concentration. Auxin increases O2 uptake by 5–10% when it induces growth. About 40% of the O2 uptake is insensitive to inhibition by KCN. Auxin has no effect on O2 uptake in the presence of KCN. The possibility that auxin-mediated elongation growth depends on a KCN-sensitive oxidative process, other than cytochrome c oxidase-catalyzed respiration, is discussed.  相似文献   

16.
Erbes DL  Gibbs M 《Plant physiology》1981,67(1):129-132
The oxyhydrogen reaction in the presence and absence of CO2 was studied in H2-adapted Scenedesmus obliquus by monitoring the initial rates of H2, O2, and 14CO2 uptake and the effect of inhibitors on these rates with gas-sensing electrodes and isotopic techniques. In the presence of 0.02 atmosphere O2, the pH2 was varied from 0 to 1 atmosphere. Whereas the rate of O2 uptake increased by only 30%, the rate of H2 uptake increased severalfold over the range of pH2 values. At 0.1 atmosphere H2 and 0.02 atmosphere O2, rates for H2 and O2 uptake were between 15 and 25 micromoles per milligram chlorophyll per hour. As the pH2 was changed from 0 to 1 atmosphere, the quotient H2:O2 changed from 0 to roughly 2. This change may reflect the competition between H2 and the endogenous respiratory electron donors. Respiration in the presence of glucose and acetate was also competitive with H2 uptake. KCN inhibited equally respiration (O2 uptake in the absence of H2) and the oxyhydrogen reaction in the presence and absence of CO2. The uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone accelerated the rate of respiration and the oxyhydrogen reaction to a similar extent. It was concluded that the oxyhydrogen reaction both in the presence and absence of CO2 has properties in common with components of respiration and photosynthesis. Participation of these two processes in the oxyhydrogen reaction would require a closely linked shuttle between mitochondrion and chloroplast.  相似文献   

17.
The uptake and degradation of atrazine (ATR) by rice seedlings (Oryza sativa L.) was investigated with and without arsenate and phosphate nutrient in the cultured solution over a period of 48 h. The hydrogen peroxide (H2O2) contents in plants under different treatments were measured to evaluate the oxidative stress of the plant cell and its influence on the plant uptake and degradation of ATR. Results indicated that the ATR levels and main degradation products, deethylatrazine (DEA) and deisopropylatrazine (DIA), in plants varied significantly in different treatments. Added arsenate in solution increased the level of DEA and the ratios of DEA to the total (ATR, DEA, and DIA) in roots, while it either increased or decreased the H2O2 content in roots. Added arsenate increased the ratios of degradation products to the total in shoots, which corresponded to the 110%–285% increase of the H2O2 content. In phosphate-deficient systems, the H2O2 contents in shoots increased significantly, especially when exposed to a low level of ATR while the ratios of DIA and DEA to the total in shoots increased. The oxidative stress in rice seedlings induced by arsenic coexisting with ATR and by phosphate deficiency affected the plant uptake and degradation of ATR.  相似文献   

18.
Cell survival and death-inducing signals are tightly associated with each other, and the decision as to whether a cell survives or dies is determined by controlling the relationship between these signals. However, the mechanism underlying the reciprocal regulation of such signals remains unclear. In this study, we reveal a functional association between PDK1 (3-phosphoinositide-dependent protein kinase 1), a critical mediator of cell survival, and ASK1 (apoptosis signal-regulating kinase 1), an apoptotic stress-activated MAPKKK. The physical association between PDK1 and ASK1 is mediated through the pleckstrin homology domain of PDK1 and the C-terminal regulatory domain of ASK1 and is decreased by ASK1-activating stimuli, such as H2O2, tumor necrosis factor α, thapsigargin, and ionomycin, as well as insulin, a PDK1 stimulator. Wild-type PDK1, but not kinase-dead PDK1, negatively regulates ASK1 activity by phosphorylating Ser967, a binding site for 14-3-3 protein, on ASK1. PDK1 functionally suppresses ASK1-mediated AP-1 transactivation and H2O2-mediated apoptosis in a kinase-dependent manner. On the other hand, ASK1 has been shown to inhibit PDK1 functions, including PDK1-mediated regulation of apoptosis and cell growth, by phosphorylating PDK1 at Ser394 and Ser398, indicating that these putative phosphorylation sites are involved in the negative regulation of PDK1 activity. These results provide evidence that PDK1 and ASK1 directly interact and phosphorylate each other and act as negative regulators of their respective kinases in resting cells.  相似文献   

19.
Abstract: Spontaneous oxygen consumption by 5,6- and 5,7-DHT (dihydroxytryptamine), related indoleethylamines, and 6-hydroxydopamine and oxygen consumption by these compounds in the presence of rat liver mitochondria were measured by the polarographic oxygen electrode technique. 5,6- and 5,7-DHT react with oxygen at very different rates (2.7 nmol O2/min and 33.4 nmol O2/min, respectively) when incubated in buffer, pH 7.2, at a concentration of 1 mm and with different kínetic characteristics. While the oxidation of 5,7-DHT obeys a reaction of second-order type, the oxidation of 5,6-DHT is more complex and characterized by autocatalytic promotion. Coloured quinoidal oxidation products appeared during the degradation of both indoleamines. Glutathione, ascorbate, dithiothreitol, cysteine, albumin, and superoxide dismutase partially prevented 5,6- and 5,7-DHT from oxidative destruction. Catalase saved oxygen only in the case of 5,6-DHT by recycling of O2 released from near-stoichiometrically formed H2O2 during oxidation of 5,6-DHT: 5,7-DHT did not generate H2O2 in measurable amounts. Oxygen consumption rates of 5,6- and 5,7-DHT were enhanced after addition of rat liver mitochondria to the incubation medium; this resulted in an accelerated formation of quinoidal products. This stimulatory effect on the oxidation rates of both 5,6- and 5,7-DHT was blocked by cyanide, but not rotenone, and was abolished by boiling of the mitochondria fraction. The observed increase in oxygen consumption in the presence of mitochondria was found not to be influenced by monoamine oxidase-dependent deamination of 5,6- and 5,7-DHT. It is postulated that 5,6- and 5,7-DHT are capable of participating in the electron transfer of the mitochondrial respiration chain beyond complex III. Results obtained in determinations of ADP:0 ratios in respiratory control experiments exclude a possible interference of 5,6-DHT, 5,7-DHT, and 6-OH-DA with phosphorylating sites. During the activated state of respiration, no signs of electron transfer inhibition by 5,6- and 5,7-DHT were detectable. A comparison and evaluation of the autoxidation rates of various hydroxylated indoleethylamines, of their affinity to the 5-HT transport sites, and their neurotoxic potency in vivo reveals that interaction of these compounds with oxygen at restricted reaction velocity is a prerequisite for efficient toxicity in monoaminergic neurons following active accumulation in these neurons via the high-affinity uptake systems.  相似文献   

20.
Gerbaud A  André M 《Plant physiology》1980,66(6):1032-1036
Unidirectional O2 fluxes were measured with 18O2 in a whole plant of wheat cultivated in a controlled environment. At 2 or 21% O2, O2 uptake was maximum at 60 microliters per liter CO2. At lower CO2 concentrations, it was strongly inhibited, as was photosynthetic O2 evolution. At 2% O2, there remained a substantial O2 uptake, even at high CO2 level; the O2 evolution was inhibited at CO2 concentrations under 330 microliters per liter. The O2 uptake increased linearly with light intensity, starting from the level of dark respiration. No saturation was observed at high light intensities. No significant change in the gas-exchange patterns occurred during a long period of the plant life. An adaptation to low light intensities was observed after 3 hours illumination. These results are interpreted in relation to the functioning of the photosynthetic apparatus and point to a regulation by the electron acceptors and a specific action of CO2. The behavior of the O2 uptake and the study of the CO2 compensation point seem to indicate the persistence of mitochondrial respiration during photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号