首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-one Listeria strains were tested for sensitivity to four class IIa bacteriocins, namely, enterocin A, mesentericin Y105, divercin V41, and pediocin AcH, and to nisin A. Class IIa bacteriocins displayed surprisingly similar antimicrobial patterns ranging from highly susceptible to fully resistant strains, whereas nisin A showed a different pattern in which all Listeria strains were inhibited. Particularly, it was observed that the strain Listeria monocytogenes V7 could not be inhibited by any of the class IIa bacteriocins tested. These observations suggest that Listeria strains resistant to the whole range of class IIa bacteriocins may occur in natural environments, which could be of great concern with regard to the use of these peptides as food preservatives. Received: 22 October 1999 / Accepted: 15 December 1999  相似文献   

2.
Enterococcus mundtii CUGF08, a lactic acid bacterium isolated from alfalfa sprouts, was found to produce mundticin L, a new class IIa bacteriocin that has a high level of inhibitory activity against the genus Listeria. The plasmid-associated operons containing genes for the mundticin L precursor, the ATP binding cassette (ABC) transporter, and immunity were cloned and sequenced. The fifth residue of the conservative consensus sequence YGNGX in the mature bacteriocin is leucine instead of valine in the sequences of the homologous molecules mundticin KS (ATO6) and enterocin CRL35. The primary structures of the ABC transporter and the immunity protein are homologous but unique.Bacteriocins are ribosomally synthesized proteinaceous compounds that inhibit closely related bacteria (19). Due to consumer concerns with chemical and irradiation preservation methods and due to the rising demand for minimally processed food products, alternative methods for shelf life extension and enhanced safety are needed. Bacteriocins are considered “natural” antimicrobials since many bacteriocins are produced by food grade lactic acid bacteria, which are generally recognized as safe. Bacteriocins can be divided into three main classes: the class I lanthionine-containing lantibiotics, exemplified by nisin; the class II non-lanthionine-containing bacteriocins; and the class III heat-labile, large proteins (6). Class III bacteriocins have limited application due to their thermal instability and cytolytic activity against eukaryotic cells. Class II can be further divided into class IIa containing pediocin-like bacteriocins, class IIb containing two-peptide bacteriocins, and class IIc containing other bacteriocins (8). Class IIa bacteriocins have been extensively studied since pediocin PA-1 was first discovered (12) and characterized (20). Currently, only nisin in class I has been approved by the FDA as a natural food additive. Bacteriocins belonging to class IIa are promising alternative antimicrobials since they are more stable over a broader range of heating regimens and pH conditions. In addition, these bacteriocins exhibit stronger antimicrobial activity against the genus Listeria than nisin (17) but have a narrower antimicrobial spectrum.The potential applications of class IIa bacteriocins in both meat and plant-based foods as a means to provide protection against potential food-borne pathogens and extend shelf life continue to expand. In an attempt to use biological methods for controlling food-borne pathogens on fresh sprouts, a number of food grade lactic acid bacteria were isolated from the indigenous microbiota on alfalfa sprouts. Some of these isolates were found to be bacteriocinogenic. This study describes a new class IIa bacteriocin, mundticin L produced by Enterococcus mundtii CUGF08 isolated from alfalfa sprouts.  相似文献   

3.
The continuing story of class IIa bacteriocins.   总被引:2,自引:0,他引:2  
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.  相似文献   

4.
The emergence of an increasing number of antibiotic resistant human clinical bacteria has been a great cause of concern for the last decades. As an example, Staphylococcus aureus isolates in the hospital environment are becoming more and more resistant to antibiotics including vancomycin which is considered as a last line of defence in treatment of Staphylococcus aureus -resistant methicillin. On the other hand, food safety is threatened by development of pathogenic bacteria including Listeria monocytogenes, Campylobacter jejuni, Salmonella enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus. The use of antimicrobial peptides such as glycopeptides, semi-synthetic peptides, bacteriocins including lantibiotics offers a hope to face these clinical and food microbiology concerns. Clinical approval of new chemotherapeutic agents requires a long period of time. Research on bacteriocins has demonstrated potential use to fight against undesired foodborne pathogens but the use industrial use of bacteriocins is limited. To date only lantibiotic nisin and in class IIa bacteriocin Pediocin PA-1 are legally used as food preservative in many countries. The present minireview is focused on divercin V41 (DvnV41), a class IIa bacteriocin naturally produced by Carnobacterium divergens V41. The last decade has been the witness of intensive investigations carried out on this cationic peptide tempting to answer multiple questions covering basic and applied aspects. DvnV41 has shown a wide spectrum of activity either alone or in combination with nisin and/or polymixins (synergistic effect). This outcome indicates that Cb. divergens V41 could potentially be used for safe and efficient prevention of L. monocytogenes growth in cold smoked salmon.  相似文献   

5.
This study aimed at characterizing two novel bacteriocin-producing enterococcal strains isolated from human intestine. A total of 200 lactic acid bacteria were isolated from a woman stool sample. Two of them were selected for characterization due to their high antimicrobial activity against five strains of Listeria monocytogenes. The selected bacteria were identified as two different strains of Enterococcus faecium and designated MT 104 and MT 162. The bacteriocins produced by MT 104 and MT 162 were stable at different pH ranging from 2 to 11 and were active after different treatments such as heat, enzymes, detergents, and γ-irradiation. The two isolated strains exhibited some probiotic properties such as survival in simulated gastric fluid and intestinal fluid, lack of expression of bile salt hydrolase or hemolytic activity, adhesion to Caco-2 cells efficiently, and sensitivity to clinical antimicrobial agents. Thus, the two isolated strains of E. faecium could become new probiotic bacteria and their bacteriocins could be used for controlling L. monocytogenes in combination with irradiation for food preservation.  相似文献   

6.
Enterococcus sp. 812, isolated from fresh broccoli, was previously found to produce a bacteriocin active against a number of Gram-positive bacteria, including Listeria monocytogenes. Bacteriocin activity decreased slightly after autoclaving (121 °C for 15 min), but was inactivated by protease K. Mass spectrometry analysis revealed the bacteriocin mass to be approximately 4,521.34 Da. N-terminal amino acid sequencing yielded a partial sequence, NH2-ATYYGNGVYXDKKKXWVEWGQA, by Edman degradation, which contained the consensus class IIa bacteriocin motif YGNGV in the N-terminal region. The obtained partial sequence showed high homology with some enterococcal bacteriocins; however, no identical peptide or protein was found. This peptide was therefore considered to be a novel bacteriocin produced by Enterococcus sp. 812 and was termed enterocin T.  相似文献   

7.
In continuation of our studies on the bioaccessibility of phenolic compounds from food grains as influenced by domestic processing, we examined the uptake of phenolics from native/sprouted finger millet (Eleucine coracana) and green gram (Vigna radiata) and native/heat-processed onion (Allium cepa) in human Caco-2 cells. Absorption of pure phenolic compounds, as well as the uptake of phenolic compounds from finger millet, green gram, and onion, was investigated in Caco-2 monolayer model. Transport of individual phenolic compounds from apical compartment to the basolateral compartment across Caco-2 monolayer was also investigated. Sprouting enhanced the uptake of syringic acid from both these grains. Open-pan boiling reduced the uptake of quercetin from the onion. Among pure phenolic compounds, syringic acid was maximally absorbed, while the flavonoid isovitexin was least absorbed. Apparent permeability coefficient P(app) of phenolic compounds from their standard solutions was 2.02 × 10?6 cm/s to 8.94 × 10?6 cm/s. Sprouting of grains enhanced the uptake of syringic acid by the Caco-2 cells. Open-pan boiling drastically reduced the uptake of quercetin from the onion. The permeability of phenolic acids across Caco-2 monolayer was higher than those of flavonoids.  相似文献   

8.
BackgroundThe scope of the present work was to characterize the activity of class IIa bacteriocins in Listeria (L.) monocytogenes cells that constitutively express an activated form of PrfA, the virulence master regulator, since bacteriocin sensitivity was only characterized in saprophytic cells so far. The mannose phosphotransferase system (Man-PTS) has been shown to be the class IIa bacteriocin receptor in Listeria; hence, special attention was paid to its expression in virulent bacteria.MethodsL. monocytogenes FBprfA* cells were obtained by transconjugation. Bacterial growth was studied in TSB and glucose containing-minimal medium. Sensitivity to antimicrobial peptides was assessed by killing curves. Membranes of L. monocytogenes FBprfA* cells were characterized using proteomic and lipidomic approaches.ResultsThe mannose phosphotransferase system (Man-PTS) was downregulated upon expression of PrfA*, and these cells turned out to be more sensitive to enterocin CRL35 and pediocin PA-1, while not to nisin. Proteomic and lipidomic analysis showed differences between wild type (WT) and PrfA* strains. For instance, phosphatidic acid was only detected in PrfA* cells, whereas, there was a significant decline of plasmalogen-phosphatidylglycerol in the same strain.ConclusionsOur results support a model in which Man-PTS acts just as a docking molecule that brings class IIa bacteriocins to the plasma membrane. Furthermore, our results suggest that lipids play a crucial role in the mechanism of action of bacteriocins.General significanceThis is the first demonstration of the link between L. monocytogenes virulence and the bacterial sensitivity toward pediocin-like peptides.  相似文献   

9.
In this report, Listeria monocytogenes isolates were evaluated for their ability to form biofilms, for adhesion/invasion of eukaryotic cells and for differential expression of internalin A (inl A) gene, which is related to virulence potential. The presence of bacteriocins of lactic acid bacteria and incubation at 5 °C were the main factors that influenced biofilm formation by L. monocytogenes, in comparison with BHI (control). In general, adhesion and invasion of Caco-2 cells were significantly lower in low pH (4.5), in incubation at 5 °C and in the presence of Oxgall 0.3 %. On the other hand, two L. monocytogenes isolates (INCQS 353 and Reg 26c) showed higher invasion rates when cultivated in the presence of NaCl 5 % (P < 0.05). One L. monocytogenes isolate (H-2) showed the strongest ability to form biofilm and to invade Caco-2 cells, under selected conditions, suggesting there is a relationship between biofilm formation and virulence potential. For all isolates, expression of inl A gene was down-regulated by the presence of bacteriocins, Oxgall 0.3 %, pH 4.5 and incubation at 5 °C. Nonetheless, for one L. monocytogenes isolate (HU 471), expression of inl A gene was eight times higher in the presence of sucrose, indicating that food components can increase the infectiveness of L. monocytogenes.  相似文献   

10.
Class IIa bacteriocins target a phylogenetically defined subgroup of mannose-phosphotransferase systems (man-PTS) on sensitive cells. By the use of man-PTS genes of the sensitive Listeria monocytogenes (mpt) and the nonsensitive Lactococcus lactis (ptn) species to rationally design a series of man-PTS chimeras and site-directed mutations, we identified an extracellular loop of the membrane-located protein MptC that was responsible for specific target recognition by the class IIa bacteriocins.Bacteriocins are small, ribosomally synthesized antimicrobial peptides that normally kill bacteria closely related to the bacteriocin producers, but some also target a wider spectrum of bacteria, including a number of pathogens and food spoilage bacterial species (5, 28). Class IIa (pediocin-like) bacteriocins display a broad antimicrobial spectrum, including important pathogens such as Listeria monocytogenes and Enterococcus faecalis. These peptides consist of 37 to 48 nonmodified amino acids, contain a conserved pediocin-box sequence (Y-G-N-G-V/L) in the N-terminal region, and have defined secondary features in their structure: a cationic β sheet at the conserved N terminus and a helix-containing domain at the less-conserved C terminus (16, 30). Class IIa bacteriocins target sensitive cells by using the mannose phosphotransferase system (man-PTS) as a receptor (6, 10, 17, 19, 33). This sugar uptake system is the major glucose transporter for many bacteria, particularly Firmicutes and Gammaproteobacteria (39). Each man-PTS complex consists of four structural domains: IIC and IID, represented by two membrane-located proteins, and IIA and IIB, which are normally represented by a single cytoplasmic protein that can form reversible contacts with its membrane-located partners (31).It has previously been shown that coexpression of the IIC and IID genes is needed to confer sensitivity to class IIa bacteriocins as well as to the lactococcal bacteriocin lactococcin A and that the cytoplasmic IIAB partner is not involved in this process (10). However, while lactococcin A (belonging to class IIc) targets only the lactococcal man-PTS, the class IIa bacteriocins target man-PTSs of species of diverse genera (e.g., Listeria, Enterococcus, and Lactobacillus) but somehow not those of the Lactococcus genus (24). This genus specificity has been recognized for almost 2 decades (20, 23, 26); still, the molecular nature underlying the specificity has remained very enigmatic. In the present report we clarify this issue by demonstrating that these two types of bacteriocins exhibit different binding patterns on their receptors: class IIa bacteriocins specifically interact with a defined region of 40 amino acids in the IIC protein whereas lactococcin A has a more complex interaction involving regions from both IIC and IID.  相似文献   

11.
Leuconostoc pseudomesenteroides 607, isolated from persimmon fruit, was found to have high inhibitory activity against Listeria monocytogenes and several other Gram-positive bacteria. Inhibitory substances were purified from culture supernatant by ion-exchange chromatography, Sep-Pak C18 cartridge, and reverse-phase high-performance liquid chromatography (RP-HPLC). Two antibacterial peptides were observed during the purification procedures. One of these peptides had a molecular size of 4623.05 Da and a partial N-terminal amino acid sequence of NH2-KNYGNGVHxTKKGxS, in which the YGNGV motif is specific for class IIa bacteriocins. A BLAST search revealed that this bacteriocin was similar to leucocin C from Leuconostoc mesenteroides. Leucocin C-specific primers were designed and a single PCR product was amplified. Analysis of the nucleotide sequence has revealed a putative peptide differing by only one amino acid residue from the sequence of leucocin C. No identical peptide or protein has been reported in the literature, and this peptide, termed leucocin C-607, was therefore considered to be a new variant of leucocin C produced by Leuc. pseudomesenteroides 607. Another antibacterial peptide purified from the same culture supernatant had a molecular size of 3007.7 or 3121.97 Da. However, detailed information regarding this second peptide remains to be determined. Distinct characteristics, such as heat stability and inhibitory spectrum, were observed for the two bacteriocins produced by Leuc. pseudomesenteroides 607. These results suggested that Leuc. pseudomesenteroides 607 produces leucocin C-607 along with another unknown bacteriocin.  相似文献   

12.
Divercin V41 is a class IIa bacteriocin produced by Carnobacterium divergens V41 with a strong anti-Listeria activity. We have previously produced a recombinant form of divercin V41 (DvnRV41) in Escherichia coli strain Origami, by cloning a synthetic gene that codes for a mature divercin RV41 peptide. In this work we describe the inducible expression and secretion of DvnRV41 in the food-grade lactic acid bacterium, Lactococcus lactis. The production of DvnRV41 by recombinant L. lactis was confirmed and quantified by Western blot and ELISA assays. In addition, anti-Listeria activity of DvnRV41 was determined using an agar diffusion test. Although the levels of DvnRV41 produced by recombinant L. lactis were similar to those produced by the natural host, C. divergens V41, the specific activities were lower. In conclusion, our data show that the bacteriocin DvnRV41 is produced and secreted in an active form by L. lactis and that this approach may have important applications in the preservation of foods.  相似文献   

13.
The antimicrobial spectra of previously published bacteriocin E 50–52 (39 a.a.; 3,932 Da; pI = 8.5) and bacteriocin B 602 (29 a.a.; 3,864 Da; pI = 7.2) were determined. Named peptides were related to class IIa (pediocin-like) bacteriocins. Minimal inhibitory concentrations (MICs) of bacteriocins have been determined for bacterial isolates that were causative agents of nosocomial infections collected from Russian hospitals in 2003–2007, namely methicillin-resistant Staphylococcus aureus (MRSA) (n = 10); Acinetobacter baumannii (n = 11); Citrobacter freundii (n = 8); Escherichia coli (n = 9); Klebsiella pneumoniae (n = 10); Proteus spp. (n = 6); and Pseudomonas aeruginosa (n = 10). The majority of these tested isolates have been shown to be multidrug resistant and carry genetic determinants of antimicrobial resistance that were detected using polymerase chain reaction (PCR). The MICs of bacteriocin B 602 ranged from ≤0.025–1.56 μg/ml, and for bacteriocin E 50–52 from 0.05 to 6.25 μg/ml for all of 64 bacterial clinical isolates tested. Interestingly, the bacteriocins studied demonstrate activity on both Gram-positive and Gram-negative bacteria. Bacteriocins E 50–52 and B 602 show good activity against nosocomial bacterial agents resistant to many classes of modern antibacterials used in clinical practice. These bacteriocins should be examined as an alternative in treating infections caused by such agents.  相似文献   

14.
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity.  相似文献   

15.

Objectives

To develop a recombinant strain of Bacillus thuringiensis that synthesizes two bacteriocins that enhance the antibacterial potency of the strain and that could have applied clinical and industrial value.

Results

We cloned the thurincin H cluster into the pHT3101 vector by assembling two genetic cassettes harboring genes for the synthesis, modification, immunity and transport of thurincin H. This construct was used to transform a thurincin H-sensitive strain of B. thuringiensis that synthesizes the kenyacin 404 to generate the recombinant Btk 404/pThurH which was immune to thurincin H and produces bacteriocins of approximately 3 kDa. A significant increase in the inhibitory activity, respectively, ~?40 and 300%, was observed when compared with parental Btm 269 and Btk 404. Btk 404/pThurH showed increased activity against ten Gram-positive bacteria, including B. cereus, Listeria monocytogenes and B. pseudomycoides, and the Gram-negative bacterium, Sphingobacterium cabi. However, an antagonistic effect against Vibrio parahaemolyticus, relative to native strains, was observed.

Conclusions

We have generated a recombinant strain of B. thuringiensis that co-synthesizes two bacteriocins (kenyacin 404, thurincin H) with improved inhibitory activity, when compared with parental strains. To our knowledge, this is the first study that shows that B. thuringiensis could be manipulated to produce two bacteriocins, one being of heterologous origin, that enhance the antibacterial activity of the recombinant strain.
  相似文献   

16.
Four class IIa bacteriocins (pediocin PA-1, enterocin A, sakacin P, and curvacin A) were purified to homogeneity and tested for activity toward a variety of indicator strains. Pediocin PA-1 and enterocin A inhibited more strains and had generally lower MICs than sakacin P and curvacin A. The antagonistic activity of pediocin-PA1 and enterocin A was much more sensitive to reduction of disulfide bonds than the antagonistic activity of sakacin P and curvacin A, suggesting that an extra disulfide bond that is present in the former two may contribute to their high levels of activity. The food pathogen Listeria monocytogenes was among the most sensitive indicator strains for all four bacteriocins. Enterocin A was most effective in inhibiting Listeria, having MICs in the range of 0.1 to 1 ng/ml. Sakacin P had the interesting property of being very active toward Listeria but not having concomitant high levels of activity toward lactic acid bacteria. Strains producing class IIa bacteriocins displayed various degrees of resistance toward noncognate class IIa bacteriocins; for the sakacin P producer, it was shown that this resistance is correlated with the expression of immunity genes. It is hypothesized that variation in the presence and/or expression of such immunity genes accounts in part for the remarkably large variation in bacteriocin sensitivity displayed by lactic acid bacteria.Many lactic acid bacteria (LAB), including members of the genera Lactococcus, Lactobacillus, Carnobacterium, Enterococcus, and Pediococcus, are known to secrete small, ribosomally synthesized antimicrobial peptides called bacteriocins (26, 29, 34). Some of these peptides undergo posttranslational modifications (class I bacteriocins), whereas others are not modified (class II bacteriocins) (29, 34). Class II bacteriocins contain between 30 and 60 residues and are usually positively charged at a neutral pH. Studies of a large number of class II bacteriocins have led to subgrouping of these compounds (29, 34). One of the subgroups, class IIa, contains bacteriocins that are characterized by the presence of YGNG and CXXXXCXV sequence motifs in their N-terminal halves as well as by their strong inhibitory effect on Listeria (e.g., 3, 4, 22, 23, 27, 28, 31, 38, 45) (Fig. (Fig.1).1). Because of their effectiveness against the food pathogen Listeria, class IIa bacteriocins have potential as antimicrobial agents in food and feed. Open in a separate windowFIG. 1Sequence alignment of class IIa bacteriocins. Residue numbering is according to the sequence of pediocin PA-1. Cysteine residues are printed in boldface; the two known class IIa bacteriocins with four cysteine residues are in the upper group. No attempt was made to optimize the alignment in the C-terminal halves of the peptides. Piscicolin 126 is identical to piscicocin V1a (4). Carnobacteriocin BM1 most probably is identical to piscicocin V1b (4). Sakacin P most probably is identical to bavaricin A (30). Curvacin A is identical to sakacin A (2). The consensus sequence includes residues conserved in at least 8 of the 12 sequences shown; 100% conserved residues are underlined.Class IIa bacteriocins act by permeabilizing the membrane of their target cells (1, 5, 6, 9, 10, 26, 28). The most recent studies on the mode of action of these bacteriocins indicate that antimicrobial activity does not require a specific receptor and is enhanced by (but not fully dependent on) a membrane potential (9, 28). Little is known about bacteriocin structure, and unravelling the relationships between structure and function is one of the great challenges in current bacteriocin research. A logical starting point for structure-function studies is a thorough study of the differences in activity and target cell specificity between naturally occurring homologous bacteriocins. A few such studies have been described, but these suffer from either a very limited number of tested indicator strains or the use of culture supernatants instead of purified bacteriocins (3, 4, 17, 45). The use of purified bacteriocins for comparative analyses is absolutely essential, since it is becoming increasingly evident that bacteriocin producers produce more than one bacteriocin (4, 8, 38, 48; this study).In the present study, the activities of four pure class IIa bacteriocins (pediocin PA-1, enterocin A, curvacin A, and sakacin P) (Fig. (Fig.1)1) were tested against a large number of LAB as well as several strains of the food pathogen Listeria monocytogenes. The bacteriocins were purified from their respective producer strains by use of an optimized purification protocol yielding highly pure samples. The contribution of disulfide formation was assessed and found to be important for activity. The effects of the purified bacteriocins on (noncognate) class IIa bacteriocin-producing strains are described, and the implications of our findings for immunity and resistance are discussed.  相似文献   

17.
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm– and archaea bacteria. Bacteriocins from Gm?+?bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960?IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications.  相似文献   

18.
Divercin V41, a class IIa bacteriocin with strong antilisterial activity, is produced by Carnobacterium divergens V41. To express a recombinant version of divercin V41, we constructed a synthetic gene that encodes the mature divercin V41 peptide and then overexpressed the gene in pET-32b by using the T7 RNA polymerase promoter in the Escherichia coli Origami (DE3)(pLysS) strain. The DvnRV41 peptide was expressed as a translational fusion protein with thioredoxin and accumulated in the cell cytoplasm in a soluble anti-Listeria active form. The fusion protein was then purified and cleaved to obtain pure, soluble, folded DvnRV41 (462 microg per 20 ml of culture). This paper describes the first design of a synthetic bacteriocin gene and the first bacteriocin expressed in the E. coli cytoplasm.  相似文献   

19.
During the recent years extensive efforts have been made to find out bacteriocins from lactic acid bacteria (LAB) active against various food spoilage and pathogenic bacteria, and superior stabilities against heat treatments and pH variations. Bacteriocins isolated from LAB have been grouped into four classes. Circular bacteriocins which were earlier grouped among the four groups of bacteriocins, have recently been proposed to be classified into a different class, making it class V bacteriocins. Circular bacteriocins are special molecules, whose precursors must be post translationally modified to join the N to C termini with a head-to-tail peptide bond. Cyclization appears to make them less susceptible to proteolytic cleavage, high temperature and pH, and, therefore, provides enhanced stability as compared to linear bacteriocins. The advantages of circularization are also reflected by the fact that a significant number of macrocyclic natural products have found pharmaceutical applications. Circular bacteriocins were unknown two decades ago, and even to date, only a few circular bacteriocins from a diverse group of Gram positive organisms have been reported. The first example of a circular bacteriocin was enterocin AS-48, produced by Enterococcus faecalis AS-48. Gassereccin A, produced by Lactobacillus gasseri LA39, Reutericin 6 produced by Lactobacillus reuteri LA6 and Circularin A, produced by Clostridium beijerinickii ATCC 25,752, are further examples of this group of antimicrobial peptides. In the present scenario, Gassericin A can be an important tool in the food preservation owing to its properties of high pH and temperature tolerance and the fact that it is produced by LAB L. gasseri, whose many strains are proven probiotic.  相似文献   

20.
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed increased activity against a strain of Leuconostoc lactis isolated from a sour-spoiled dairy product. To develop an even more effective version of this chimera, a DNA-shuffling library was constructed, wherein four specific regions within the N-terminal half of pediocin PA-1 were shuffled with the corresponding sequences from 10 other class IIa bacteriocins. Activity screening indicated that 63 out of 280 shuffled mutants had antimicrobial activity. A colony overlay activity assay showed that one of the mutants (designated B1) produced a >7.8-mm growth inhibition circle on L. lactis, whereas the parent pediocin PA-1 did not produce any circle. Furthermore, the active shuffled mutants showed increased activity against various species of Lactobacillus, Pediococcus, and Carnobacterium. Sequence analysis revealed that the active mutants had novel N-terminal sequences; in active mutant B1, for example, the parental pediocin PA-1 sequence (KYYGNGVTCGKHSC) was changed to TKYYGNGVSCTKSGC. These new and improved DNA-shuffled bacteriocins could prove useful as food additives for inhibiting sour spoilage of dairy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号