首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Xu L  Tschirner U 《Bioresource technology》2011,102(21):10065-10071
Saccharification is one of the most critical steps in producing lignocellulose-based bio-ethanol through consolidated bioprocessing (CBP). However, extreme pH and ethanol concentration are commonly considered as potential inhibitors for the application of Clostridium sp. in CBP. The fermentations of several saccharides derived from lignocellulosics were investigated with a co-culture consisting of Clostridium themocellum and Clostridium thermolacticum. Alkali environments proved to be more favorable for ethanol production. Fermentation inhibition was observed at high ethanol concentrations and extreme pH. However, low levels of initial ethanol addition resulted in an unexpected stimulatory impact on the final ethanol productions for all cultures under selected conditions. The co-culture was able to actively ferment glucose, xylose, cellulose and micro-crystallized cellulose (MCC). The ethanol yield observed in the co-culture was higher (up to twofold) than in mono-cultures, especially in MCC fermentation. The highest ethanol yield (as a percentage of the theoretical maximum) observed was 75% (w/w) for MCC and 90% (w/w) for xylose.  相似文献   

2.
Summary Here we report on the effects of phosphoric acid pretreated cellulose as a substrate for ethanol production by K. marxianus IMB3 using simultaneous saccharification and fermentation systems at 45°C. With untreated, milled filter paper as substrate the maximum amount of ethanol produced was 25% of the maximum theoretical yield. After pre-treatment with 100% phosphoric acid, the yield increased to 42% of the maximum theoretical yield. When untreated microcrystalline cellulose was used as the fermentation substrate, yields of ethanol as 45°C amounted to 16% of the maximum theoretical yield whereas pretreatment of the substrate with phosphoric acid resulted in an increase in ethanol production to 69% of the maximum theoretical yield. This suggests that pretreatment of substrate with phosphoric acid would contribute to a reduction in the amount of exogenous enzyme needed.  相似文献   

3.
The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry.  相似文献   

4.
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l?1 Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.  相似文献   

5.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

6.
Strain improvement of Pichia angophorae KCTC 17574 was successfully carried out for bioethanol fermentation of seaweed slurry with high salt concentration. P. angophorae KCTC 17574 was cultured under increasing salinity from five practical salinity unit (psu, ‰) to as high as 100 psu for 723 h. The seaweed, Undaria pinnatifida (sea mustard, Miyuk), was fermented to produce bioethanol using high-salt acclimated yeast. The pretreatment of U. pinnatifida was optimized using thermal acid hydrolysis to obtain a high monosaccharide yield. Optimal pretreatment conditions of 75 mM H2SO4 and 13 % (w/v) slurry at 121 °C for 60 min were determined using response surface methodology. A maximum monosaccharide content of 28.65 g/L and the viscosity of 33.19 cP were obtained. The yeasts cultured under various salinity concentrations were collected and inoculated to the pretreated seaweed slurry after the neutralization using 5 N NaOH. The pretreated slurry was fermented with the inoculation of 0.1 g dcw/L of P. angophorae KCTC 17574 strain obtained at 90 psu. The maximum ethanol concentration of 9.42 g/L with 27 % yield of theoretical case of ethanol production from total carbohydrate of U. pinnatifida was obtained.  相似文献   

7.
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.  相似文献   

8.
The supercritical carbon dioxide (SC-CO2) pretreatment of lignocellulose for enzymatic hydrolysis of cellulose was investigated. Aspen (hardwood) and southern yellow pine (softwood) with moisture contents in the range of 0-73% (w/w) were pretreated with SC-CO2 at 3100 and 4000 psi and at 112-165 degrees C for 10-60 min. Each pretreated lignocellulose was hydrolyzed with commercial cellulase to assess its enzymatic digestibility. Untreated aspen and southern yellow pine (SYP) gave final reducing sugar yields of 14.5 +/- 2.3 and 12.8 +/- 2.7% of theoretical maximum, respectively. When no moisture was present in lignocellulose to be pretreated, the final reducing sugar yield from hydrolysis of SC-CO2-pretreated lignocellulose was similar to that of untreated aspen. When the moisture content of lignocellulose was increased, particularly in aspen, significantly increased final sugar yields were obtained from enzymatic hydrolysis of SC-CO2-pretreated lignocellulose. When the moisture content of lignocellulose was 73% (w/w) before pretreatment, the sugar yields from the enzymatic hydrolysis of aspen and southern yellow pine pretreated with SC-CO2 at 3100 psi and 165 degrees C for 30 min were 84.7 +/- 2.6 and 27.3 +/- 3.8% of theoretical maximum, respectively. The SC-CO2 pretreatments of both aspen and SYP with moisture contents of 40, 57, and 73% (w/w) showed significantly higher final sugar yields compared to the thermal pretreatments without SC-CO2.  相似文献   

9.
Different nutrients were added into the solid fermentation of woody biomass, Populus tomentosa, to improve pretreatment by a white rot fungus, Trametes velutina. Fungal pretreatment supplemented with trace elements resulted in large amount of lignin loss but low degradation of carbohydrate. Only 12.6?% of Klason lignin was left in the residues pretreated by T. velutina for 8?weeks supplemented with 1?% trace elements (TE group). When fungal-pretreated residues were subjected to enzymatic hydrolysis for 96?h, a maximum reducing sugar yield of 44?% was obtained from the TE group at the 8th week, 2.3 times higher than that of untreated samples. In addition, the highest ethanol yield of 22?% was observed by the fermentation of 8-week pretreated residues from the basic medium plus trace element group, which was five times more than that of untreated samples.  相似文献   

10.
Acetone–butanol–ethanol (ABE) production from corncob was achieved using an integrated process combining wet disk milling (WDM) pretreatment with enzymatic hydrolysis and fermentation by Clostridium acetobutylicum SE-1. Sugar yields of 71.3 % for glucose and 39.1 % for xylose from pretreated corncob were observed after enzymatic hydrolysis. The relationship between sugar yields and particle size of the pretreated corncob was investigated, suggesting a smaller particle size benefits enzymatic hydrolysis with the WDM pretreatment approach. Analysis of the correlation between parameters representing particle size and efficiency of enzymatic hydrolysis predicted that frequency 90 % is the best parameter representing particle size for the indication of the readiness of the material for enzymatic hydrolysis. ABE production from corncob was carried out with both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using C. acetobutylicum SE-1. Interestingly, when considering the time for fermentation as the time for ABE production, a comparable rate of sugar consumption and ABE production in the SHF process (0.55 g/l·h sugar consumption and 0.20 g/l·h ABE production) could be observed when glucose (0.50 g/l·h sugar consumption and 0.17 g/l·h ABE production) or a mixture of glucose and xylose (0.68 g/l·h sugar consumption and 0.22 g/l·h ABE production) mimicking the corncob hydrolysate was used as the substrate for fermentation. This result suggested that the WDM is a suitable pretreatment method for ABE production from corncob owing to the mild conditions. A higher ABE production rate could be observed with the SSF process (0.15 g/l·h) comparing with SHF process (0.12 g/l·h) when combining the time for saccharification and fermentation and consider it as the time for ABE production. This is possibly a result of low sustained sugar level during fermentation. These investigations lead to the suggestion that this new WDM pretreatment method has the potentials to be exploited for efficient ABE production from corncob.  相似文献   

11.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

12.
The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.  相似文献   

13.
The use of high concentrations of molasses as a fermentation feed-stock for ethanol production is normally precluded by the presence of inhibitory compounds. Use of the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 in fermentations containing high concentrations of molasses resulted in sub-optimal production of ethanol. The results suggested that this was caused by the presence of inhibitory materials rather than an intolerance to increased concentrations of ethanol. In the current study we describe the pretreatment of molasses preparations with either an Amberlite® monobed mixed ion-exchange resin or non-living microbial biomass from a local distillery. In the study molasses samples diluted to yield a final sugar concentration of 160?g/l were used as the substrate. Control fermentations using the untreated molasses dilutions yielded a maximum ethanol concentration of 40?g/l, representing 49% of the maximum theoretical yield. Fermentations using molasses samples pre-treated with Amberlite® or non-living biomass yielded maximum ethanol concentrations of 58 and 54?g/l, representing 71 and 66% of the maximum theoretical yield, respectively. The results suggest that pre-treatment brings about removal of toxic or inhibitory materials from the fermentation feed-stock and we believe that such pre-treatments, particularly using the less expensive non-living biomass preparations may find a role in processes concerned with the commercial production of ethanol from molasses using this microorganism.  相似文献   

14.
We have developed a relatively simple simultaneous saccharification and fermentation (SSF) technique to determine the ethanol production potential for large sets of biomass samples. The technique is based on soaking approximately 0.5 grams of a biomass sample in aqueous ammonia at room temperature and at atmospheric pressure for 24 h, then fermenting with Saccharomyces cerevisiae D5A for 24 h using Spezyme CP, for enzymatic hydrolysis of structural polysaccharides. We have tested the technique on a set of corn stover samples representing much of the genetic variability in the commercial corn hybrid population. The samples were weighed into modified Ankom filter bags (F57) before soaking to avoid biomass loss during the process. Fermentation samples were analyzed for ethanol after 24 h by HPLC. Percentages of theoretical maximum ethanol yields of the samples ranged between 44.9 and 73%. We observed that percentages of theoretical maximum ethanol yields were highly correlated (r 2?=?0.90) with acid detergent lignin concentration while a low correlation was observed between cellulose concentration and ethanol yield. Near infrared spectra of corn stover samples were also examined. The coefficient of determination (r 2) from regression of predicted versus measured percent theoretical maximum ethanol yield was 0.96. This result suggests that using NIRS is a promising method for predicting ethanol yield, but larger calibration sets are necessary for obtaining improved accuracy for larger sample populations. We conclude that the developed SSF technique could be applied to large numbers of biomass samples to rapidly estimate ethanol yields and to compare different biomass samples in terms of ethanol yields.  相似文献   

15.
An abundant agricultural residue, rice straw (RS) was pretreated using ammonia fiber expansion (AFEX) process with less than 3% sugar loss. Along with commercial cellulase (Spezyme® CP) at 15 filter paper unit/g of glucan, the addition of Multifect® Xylanase at 2.67 mg protein/g glucan and Multifect® Pectinase at 3.65 mg protein/g glucan was optimized to greatly increase sugar conversion of AFEX-treated RS. During enzymatic hydrolysis even at 6% glucan loading (equivalent to 17.8% solid loading), about 80.6% of glucan and 89.6% of xylan conversions (including monomeric and oligomeric sugars) were achieved. However, oligomeric glucose and xylose accounted for 12.3% of the total glucose and 37.0% of the total xylose, respectively. Comparison among the three ethanologenic strains revealed Saccharomyces cerevisiae 424A(LNH-ST) to be a promising candidate for RS hydrolysate with maximum ethanol metabolic yield of 95.3% and ethanol volumetric productivity of 0.26 g/L/h. The final concentration of ethanol at 37.0 g/L was obtained by S. cerevisiae 424A(LNH-ST) even with low cell density inoculum. A biorefinery combining AFEX pretreatment with S. cerevisiae 424A(LNH-ST) in separate hydrolysis and fermentation could achieve 175.6 g EtOH/kg untreated rice straw at low initial cell density (0.28 g dw/L) without washing pretreated biomass, detoxification, or nutrient supplementation.  相似文献   

16.
In this study, wheat straw was pretreated with a microfluidizer to improve its enzymatic hydrolysis and ethanol yields. The pretreatment was performed at various pressures (500, 1000, and 1500 bar) and solid loadings (1, 2, and 3%). The microfluidized biomass was then subjected to hydrolysis and simultaneous saccharification and co-fermentation (SSCF) experiments at different enzyme loadings (5, 10, and 15 FPU/g dry wheat straw) using a mutant yeast. The results indicated that the microfluidization method alters the structure of biomass and leads to a reduction in lignin content. The samples pretreated at 1% solid loading contained the minimum lignin concentration and provided the maximum sugar and ethanol yields. These results signified that the microfluidization method is more effective on biomass at low solid loadings. The process conditions were optimized for higher ethanol and sugar yields using response surface methodology (RSM). The optimum pressure and solid and enzyme loadings were found as 1500 bar, 1%, and 15 FPU/g dry wheat straw, respectively. The yields obtained at this condition were 82%, 94%, and 65% for glucose, xylose, and ethanol, respectively. High sugar yields implied that microfluidization is an effective pretreatment method for cellulosic ethanol production. On the other hand, low ethanol yield may indicate that the microorganism was sensitive to inhibitory compounds present in the fermentation medium.  相似文献   

17.
The purpose of this study was to enhance the economic efficiency of producing bioethanol. Pretreatment solution recycling is expected to increase economic efficiency by reducing the cost of pretreatment and the amount of wastewater. In addition, the production of high-concentration bioethanol could increase economic efficiency by reducing the energy cost of distillation. The pretreatment conditions were 95 °C, 0.72 M NaOH, 80 rpm twin-screw speed, and flow rate of 90 mL/min at 18 g/min of raw biomass feeding for pretreatment solution recycling. The pretreatment with NaOH solution recycling was conducted five times. All of the components and the pretreatment efficiency were similar, despite reuse. In addition, we developed a continuous biomass feeding system for production of high-concentration bioethanol. Using this reactor, the bioethanol productivity was investigated using various pretreated biomass feeding rates in a simultaneous saccharification and fermentation (SSF) process. The maximum ethanol concentration, yield, and productivity were 74.5 g/L, 89.5 %, and 1.4 g/L h, respectively, at a pretreated biomass loading of approximately 25 % (w/v) with an enzyme dosage of 30 FPU g/cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.  相似文献   

18.
This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5–2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2SO4). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.  相似文献   

19.
In the production of ethanol from lignocellulosic material, pretreatment of the raw material before enzymatic hydrolysis and fermentation is essential to obtain high overall yields of sugar and ethanol. Two‐step steam pretreatment results in higher ethanol yields from softwood than the standard one‐step pretreatment process. However, the difficulty with separation and washing of the material at high pressure between the two pretreatment steps is a major drawback. In this study, a new one‐step pretreatment procedure was investigated, in which the time‐temperature profile was varied during pretreatment. The efficiency of pretreatment was assessed by performing simultaneous saccharification and fermentation on the pretreated slurries. Pretreatment of SO2‐impregnated softwood performed by varying the temperature (190–226°C), the residence time (5–10 min), and the mode of temperature increase (linear or stepwise), resulted in recovery of about 90% of the mannose and glucose present in the raw material. The highest ethanol yield, 75% of theoretical based on the glucan and mannan content of the raw material, was obtained at pretreatment conditions of 190°C for 12 min. Similar ethanol yields were achieved when running the pretreatment as one‐step (190–200°C), two levels of temperature, at shorter residence time (7 min), which results in lower capital costs for the process. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.

Background

Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently.

Results

The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively.

Conclusions

Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号