首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acyl–acyl carrier protein (ACP) thioesterase (acyl-ACP TE) from Streptococcus pyogenes (strain MGAS10270) was codon-optimized and expressed in Escherichia coli K-12 W3110 and Escherichia coli K-12 MG1655. By employing codon-optimized S. pyogenes acyl-ACP TE to improve the total free fatty acids (FFAs) and to tailor the composition of FFAs, high-specificity production of saturated fatty acids (C12, C14) and unsaturated fatty acids (C18:1 C18:2) was achieved in recombinants. E. coli SGJS41 and SGJS46 (codon-optimized acyl-ACP TE of S. pyogenes) demonstrated the highest intracellular total FFA content (339 mg/l vs 342 mg/l); in particular, the content of C12 and C14 FFAs was about 3–5 fold, and the content of C18:1 and C18:2 FFAs was about 8–42 fold higher than that in the control E. coli and E. coli JES1017 (original acyl-ACP TE of S. pyogenes).  相似文献   

2.
Cytidine is a precursor of several antiviral drugs. The pentose phosphate pathway (PPP) is primarily responsible for NADPH and 5-phospho-α-d-ribose 1-diphosphate as an important precursor of cytidine biosynthesis in Escherichia coli. To enhance cytidine production, we obtained the recombinant E. coli CYT15-gnd-prs-zwf that co-expressed the prs, zwf, and gnd genes encoding phosphoribosylpyrophosphate synthetase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (three key enzymes in PPP) respectively. In fermentation experiments, strain CYT15-gnd-prs-zwf produced 735 mg cytidine/l using glucose as substrate, which was approx. 128 % higher than the cytidine production by the parental strain (CYT15). Co-expression of zwf, gnd, and prs decreased growth (3.2 %) slightly and increased glucose uptake (72 %). This is the first study to report increased cytidine production by increasing metabolic flux through the PPP in E. coli.  相似文献   

3.
The benzoylformate decarboxylase gene (mdlC) from Pseudomonas putida was expressed in Escherichia coli BL21(DE3). The recombinant strain together with E. coli/pET30a-mdlB converted (S)-3-ethoxy-4-hydroxymandelic acid (S-EMA) into ethyl vanillin without ethyl vanillin degradation. 4 g ethyl vanillin/l was obtained from 10 g EMA/l within 12 h at 30 °C. This is the first report on the biotransformation of (S)-EMA to ethyl vanillin.  相似文献   

4.
A xylanase gene (xynZF-2) from the Aspergillus niger XZ-3S was cloned and expressed in Escherichia coli. The coding region of the gene was separated by only one intron with the 68 bp in length. It encoded 225 amino acid residues of a protein with a calculated molecular weight of 24.04 kDa plus a signal peptide of 18 amino acids. The amino acid sequence of the xynZF-2 gene had a high similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The mature peptide encoding cDNA was subcloned into pET-28a(+) expression vector. The resultant recombinant plasmid pET-28a-xynZF-2 was transformed into E. coli BL21(DE3), and finally the recombinant strain BL21/xynZF-2 was obtained. A maximum activity of 42.33 U/mg was gained from cellular of E. coli BL21/xynZF-2 induced by IPTG. The optimum temperature and pH for recombinant enzyme which has a good stability in alkaline conditions were 40 °C and 5.0, respectively. Fe3+ had an active effect on the enzyme obviously.  相似文献   

5.
Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-l-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-l-fucose resulted in a maximum GDP-l-fucose concentration of 291.5 mg/l, which corresponded to a 51 % enhancement compared with the control strain. In a fed-batch Baeyer–Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6 g/l was obtained, which corresponded to a 96 % enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.  相似文献   

6.
Escherichia coli strain CAR001 that produces β-carotene was genetically engineered to produce lycopene by deleting genes encoding zeaxanthin glucosyltransferase (crtX) and lycopene β-cyclase (crtY) from the crtEXYIB operon. The resulting strain, LYC001, produced 10.5 mg lycopene/l (6.5 mg/g dry cell weight, DCW). Modulating expression of genes encoding α-ketoglutarate dehydrogenase, succinate dehydrogenase and transaldolase B within central metabolic modules increased NADPH and ATP supplies, leading to a 76 % increase of lycopene yield. Ribosome binding site libraries were further used to modulate expression of genes encoding 1-deoxy-d-xylulose-5-phosphate synthase (dxs) and isopentenyl diphosphate isomerase (idi) and the crt gene operon, which improved the lycopene yield by 32 %. The optimal strain LYC010 produced 3.52 g lycopene/l (50.6 mg/g DCW) in fed-batch fermentation.  相似文献   

7.
Microbial biosynthesis of free fatty acids (FFAs) can be achieved by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The engineered E. coli usually produced even chain FFAs. In this study, propionyl-CoA synthetase (prpE) from Salmonella enterica was overexpressed in two efficient even chain FFAs producers, ML103 (pXZM12) carrying the acyl-ACP thioesterase gene from Umbellularia californica and ML103 (pXZ18) carrying the acyl-ACP thioesterase gene from Ricinus communis combined with supplement of extracellular propionate. With these metabolically engineered E. coli, the odd straight chain FFAs, undecanoic acid (C11:0), tridecanoic acid (C13:0), and pentadecanoic acid (C15:0) were produced from glucose and propionate. The highest total odd straight chain FFAs produced by ML103 (pXZM12, pBAD-prpE) reached 276 mg/l with a ratio of 23.43 % of the total FFAs. In ML103 (pXZ18, pBAD-prpE), the highest total odd straight chain FFAs accumulated to 297 mg/l, and the ratio reached 17.68 % of the total FFAs. Due to the different substrate specificity of the acyl-ACP thioesterases, the major odd straight chain FFA components of ML103 (pXZM12, pBAD-prpE) were undecanoic acid and tridecanoic acid, while the ML103 (pXZ18, pBAD-prpE) preferred pentadecanoic acid.  相似文献   

8.
A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.  相似文献   

9.
Escherichia coli DH5α strain was selected as the recombinant host, and a chemically defined medium supplemented with amino acids was used instead of a complex medium for the efficient production of β-carotene. In a fed-batch culture using glycerol with a chemically defined medium supplemented with amino acids, the concentration, specific content, and productivity of β-carotene were 2,470 mg/l, 72 mg/g cells, and 77 mg/l h after 32 h, respectively. These values were, respectively, 43, 33, and 26 % higher than those obtained using the complex medium. This is the highest β-carotene production that has been reported among the recombinant cells to date.  相似文献   

10.
Uroporphyrinogen III (urogen III) was produced from 5-aminolevulinic acid (ALA), which is a common precursor of all metabolic tetrapyrroles, using thermostable ALA dehydratase (ALAD), porphobilinogen deaminase (PBGD), and urogen III synthase (UROS) of Thermus thermophilus HB8. The UROS-coding gene (hemD 2 ) of T. thermophilus HB8 was identified by examining the gene product for its ability to produce urogen III in a coupled reaction with ALAD and PBGD. The genes encoding ALAD, PBGD, and UROS were separately expressed in Escherichia coli BL21 (DE3). To inactivate indigenous mesophilic enzymes, the E. coli transformants were heated at 70 °C for 10 min. The bioconversion of ALA to urogen III was performed using a mixture of heat-treated E. coli transformants expressing ALAD, PBGD, and UROS at a cell ratio of 1:1:1. When the total cell concentration was 7.5 g/l, the mixture of heat-treated E. coli transformants could convert about 88 % 10 mM ALA to urogen III at 60 °C after 4 h. Since eight ALA molecules are required for the synthesis of one porphyrin molecule, approximately 1.1 mM (990 mg/l) urogen III was produced from 10 mM ALA. The present technology has great potential to supply urogen III for the biocatalytic production of vitamin B12.  相似文献   

11.
Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96?±?0.06 mg/L chloramphenicol-3-isobutyrate and 3.94?±?0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77?±?3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.  相似文献   

12.
Two aspartase-overproducing mutants of Escherichia coli B were characterized. Strain EAPc7 had a mutation enhancing aspartase formation in the region of aspartase gene. This mutation did not affect catabolite repression by aspartase. Strain EAPc244 showed a high cAMP content and an elevated adenylate cyclase activity. This mutation was closely linked to the ilv locus and caused the release of catabolite repression for various catabolite repression-sensitive enzymes, resulting in overproduction of adenylate cyclase. This mutation was transduced to an Ile strain derived from strain EAPc7 using the Ile+ selective marker. The constructed strain AT202, having the above 2 mutations, produced about 3-fold and 18-fold more aspartase than did the 2 parent strains and the wild-type strain, respectively, when cultured in the medium used for industrial production of aspartase. Strain AT202 maintained stably high aspartase activity after 30 cell generations. On the other hand, in E. coli K-12 harboring the aspA+ recombinant plasmid pYT471 (pBR322-aspA+), the activity decreased to the E. coli K-12 level. Hence, strain AT202 is more advantageous for industrial production of l-aspartic acid than cells harboring the aspA+-recombinant plasmid pYT471.  相似文献   

13.
Escherichia coli MG1655 (DE3) with the ability to synthesize butanol from glycerol was constructed by metabolic engineering. The genes thil, adhe2, bcs operon (crt, bcd, etfB, etfA, and hbd) were cloned into the plasmid vectors, pETDuet-1 and pACYCDuet-1, then the two resulting plasmids, pACYC-thl-bcs and pET-adhe2, were transferred to E. coli, and the recombinant strain was able to synthesize up to 18.5 mg/L butanol on a glycerol-containing medium. After the glycerol transport protein gene GlpF was expressed, the butanol production was improved to 22.7 mg/L. The competing pathway of byproducts, such as ethanol, succinate, and lactate, was subsequently deleted to improve the 1-butanol production to 97.9 mg/L. Moreover, a NADH regeneration system was introduced into the E. coli, and finally a 154.0 mg/L butanol titer was achieved in a laboratory-scale shake-flask experiment.  相似文献   

14.
Although most bacteria produce fatty acids (FA), few secrete free FAs into the culture media. Over-expression of two FA thioesterases, TesA and AtFatA, facilitated both total and FFA production in a recombinant strain of Escherichia coli. When these thioesterases were expressed in a fadD and fadL double-deletion strain, a further enhancement of FFA secretion was observed. These results support a simple diffusion mechanism for FA transport. In addition, the ATP-binding cassette transporter protein, MsbA, also increased the concentration of FFAs in the culture. The final strain produced 110 mg FFA/l, about 33 % of the total FAs being produced. Our findings support a diffusion mechanism for FA transport.  相似文献   

15.
Wild-type and mutant (AB 1157 and K-12) strains of Escherichia coli were shown to synthesize the logarithmic growth phase, exometabolites reactivating UV-irradiated cells of producer strains. The exometabolites of the strain K-12 were of protein nature and had a molecular weight of no more than 10 kDa. The reactivating activity of these exometabolites was inversely related to bacterial survival and slightly increased under the influence of stress factors. The reactivating factor of Luteococcus casei had a cross-reactivating and protective effect on UV-irradiated cells of E. coli strain K-12. Due to activation of the reactivating factor after UV irradiation and heating, the cross-protective effect increased more than threefold. The reactivating effect remained unchanged under these conditions. The protein exometabolites of E. coli did not induce cross-stress response in L. casei.  相似文献   

16.
Escherichia coli harboring the gene encoding human interleukin-2 (IL-2) produces a mixture of two recombinant IL-2 species: one with the amino-terminal alanine (rIL-2) and the other having an additional methionine residue at the amino terminus (Met-rIL-2). Ways to increase the amount of rIL-2 and its proportion to the total IL-2 were tried. Among E. coli K-12 derivatives, N4830 was an effective producer of recombinant IL-2. The production of the mixture was greatly increased by optimizing the medium ingredients or culture conditions. However, the percentage of rIL-2 in the product decreased almost linearly with an increase of the total production of recombinant IL-2 and was less than 10% under optimal culture conditions. By adding 4.1 × 10−5 M maganese and 7.4 × 10−5 M ferric ions to the medium, we succeeded in raising the percentage of rIL-2 to 50% without any decrease of the total production.  相似文献   

17.
Strains of Escherichia coli recently isolated from human feces were examined for the frequency with which they accept an R factor (R1) from a derepressed fi+ strain of E. coli K-12 and transfer it to fecal and laboratory strains. Colicins produced by some of the isolates rapidly killed the other half of the mating pair; therefore, conjugation was conducted by a membrane filtration procedure whereby this effect was minimized. The majority of fecal E. coli isolates accepted the R factor at lower frequencies than K-12 F, varying from 10−2 per donor cell to undetectable levels. The frequencies with which certain fecal recipients received the R-plasmid were increased when its R+ transconjugant was either cured of the R1-plasmid and remated with the fi+ strain or backcrossed into the parental strain. The former suggests the loss of an incompatibility plasmid, and the latter suggests the modification of the R1-plasmid deoxyribonucleic acid (DNA). In general, the fecal R+E. coli transconjugants were less effective donors for K-12 F and heterologous fecal strains than was the fi+ K-12 strain, whereas the single strain of Citrobacter freundii examined was generally more competent. Passage of the R1-plasmid to strains of salmonellae reached mating frequencies of 10−1 per donor cell when the recipient was a Salmonella typhi previously cured of its resident R-plasmid. However, two recently isolated strains of Salmonella accepted the R1-plasmid from E. coli K-12 R+ or the R+E. coli transconjugants at frequencies of 5 × 10−7 or less.  相似文献   

18.
The ompA gene of Escherichia coli codes for a major protein of the outer membrane. When this gene was moved between various unrelated strains (E. coli K-12 and two clinical isolates of E. coli) by transduction, the gene was expressed very poorly. Recombinants carrying “foreign” genes produced no OmpA protein which could be detected on polyacrylamide gels and became resistant to bacteriophage K3, which uses this protein as receptor. The recombinants were sensitive to host-range mutants of K3, indicating a very low level of OmpA protein was produced. When an E. coli K-12 recombinant carrying an unexpressed foreign ompA allele was subjected to two cycles of selection for an OmpA+ phenotype, a mutant strain was obtained which was sensitive to K3 and which expressed nearly normal levels of OmpA protein in the outer membrane. This strain carried mutations in the foreign ompA gene, as indicated both by genetic mapping and the alteration of a peptide in the mutant OmpA protein. The ability of the OmpA protein to bind to lipopolysaccharide (LPS) showed similar strain specificity, and the mutant OmpA protein which was expressed in an unrelated host showed enhanced ability to bind LPS from its new host. Thus, cell surface expression of the ompA gene appears to depend upon the ability of the gene product to bind LPS, suggesting that an interaction between the protein and LPS plays an essential role in biosynthesis of this outer membrane protein.  相似文献   

19.

Objectives

To construct an Escherichia coli strain capable of producing riboflavin with high titer and yield.

Results

A low copy number plasmid pLS01 containing a riboflavin operon under the control of a constitutive promoter was constructed and introduced into Escherichia coli MG1655. Subsequently, the pfkA, edd and ead genes were disrupted, and the resulting strain LS02T produced 667 mg riboflavin/l in MSY medium supplied with 10 g glucose/l in flask cultivation. In a fed-batch process, riboflavin production of the strain reached 10.4 g/l with a yield of 56.8 mg riboflavin/g glucose.

Conclusion

To our knowledge, this is the first report of engineered E. coli strains that can produce more than 10 g riboflavin/l in fed-batch cultivation, indicating that E. coli has potential for riboflavin production.
  相似文献   

20.
Escherichia coli K4 synthesizes a capsular polysaccharide (CPS) consisting of a fructose-branched chondroitin (GalNAc-GlcA(fructose)n), which is a biosynthetic precursor of chondroitin sulfate. Here, the role of kfoE in the modification of the chondroitin backbone was investigated using knock-out and recombinant complementation experiments. kfoE disruption and complementation had no significant effect on cell growth. CPS production was increased by 15 % in the knock-out strain, and decreased by 21 % in the knock-out strain complemented with recombinant kfoE. CPS extracted from the knock-out strain was chondroitin, whereas CPS extracted from the complemented strain was a fructose-branched chondroitin. The results demonstrated that the kfoE gene product altered the fructose group at the C3 position of the GlcA residue during production of K4CPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号