首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

2.
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.  相似文献   

3.
The objective of this work is to assess the structure and activity of Candida rugosa lipase (CRL) pretreated with seventeen ionic liquids (ILs), five organic solvents and super-critical carbon dioxide (SC-CO2). The results revealed that anion selection of ILs showed generally much greater effects on CRL esterification activity than cation choice, and CRL pretreated by ILs with strong water miscible properties showed very low esterification activity. The highest CRL activity treated with ILs [Hmim][PF6] was obtained with the value of 45078.0 U/g-protein. Furthermore, the CRL activities pretreated with five conventional organic solvents were also examined and the values increased with the log P decrease of organic solvents when log P was lower than 2.0. Finally, the CRL activities were respectively 1.2- and 1.3-fold higher over the untreated ones after pretreatment with sub- and super-critical CO2 under the pressures of 6 MPa and 15 MPa at 40 °C for 20 min. Further analyses via FT-IR demonstrated that the high activity of CRL pretreated with ILs, organic solvents and SC-CO2 was probably caused by the changes of CRL secondary structure. In conclusion, the results in this work will be helpful for us to choose the suitable reaction medium in CRL biocatalysis and biotransformation reactions.  相似文献   

4.
The thermostablility and enzymatic activity of 1,3-1,4-β-glucanase (BglA) from Bacillus amyloliquefaciens was improved by modifying five (out of 12) ε-amino groups in lysine residues with nitrous acid. The optimal modification condition for BglA was determined as 30 mM nitrous acid at, 40 °C for 30 min. The optimally-modified BglA had higher specific activity and T 50 value, which were 3,370 U/mg and 70 °C, respectively. Its half-life values at 50 and 60 °C were extended and reached 58.5 and 49.5 min, respectively. Circular dichroism analysis showed that the secondary structures in modified BglA were almost the same with that of wild-type BglA. Thus, modification of lysine residues can simultaneously improve the activity and thermostability of β-glucanase which are ideal targets for further protein engineering.  相似文献   

5.
An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0–12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents.  相似文献   

6.
The gene of Thermotoga maritima GH10 xylanase (TmXYN10B) was synthesised to study the extreme limits of this hyperthermostable enzyme at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids (ILs). TmXYN10B expressed from Pichia pastoris showed maximal activity at 100 °C and retained 92 % of maximal activity at 105 °C in a 30-min assay. Although the temperature optimum of activity was lowered by 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), TmXYN10B retained partial activity in 15–35 % hydrophilic ILs, even at 75–90 °C. TmXYN10B retained over 80 % of its activity at 90 °C in 15 % [EMIM]OAc and 15–25 % 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DMP) during 22-h reactions. [EMIM]OAc may rigidify the enzyme and lower V max. However, only minor changes in kinetic parameter K m showed that competitive inhibition by [EMIM]OAc of TmXYN10B is minimal. In conclusion, when extended enzymatic reactions under extreme conditions are required, TmXYN10B shows extraordinary potential.  相似文献   

7.
Inhibition of milk xanthine oxidase by fluorodinitrobenzene   总被引:1,自引:0,他引:1  
Milk xanthine oxidase reacted with fluorodinitrobenzene resulting in the modification of two lysine residues with a 6-fold decrease in catalytic activity. Continued reaction with fluorodinitrobenzene up to a total of 11 dinitrophenyl residues/equivalent of enzyme-bound FAD resulted in no further decrease in activity. Stopped flow studies revealed that the modification perturbed the reduction of the enzyme by xanthine; this was 6-fold lower with modified than with native enzyme. The reaction of the reduced modified enzyme with oxygen was qualitatively and quantitatively the same as with native enzyme. One nitro group of each dinitrophenyl lysine residue is slowly reduced by xanthine; reduction of both nitro groups is achieved by dithionite. The two dinitrophenyl lysine reduces can be distinguished on the basis of their kinetics of reduction. One appears to be located on the protein surface and is reduced in an intermolecular reaction, while the other appears to be located in a pocket of the enzyme and is reduced in a slow intramolecular reaction.  相似文献   

8.
The formate dehydrogenase (FDH, EC: 1.2. 1.2) from Candida boidinii was found to be inactivated and unstable in the presence of high concentration (>50%) of the water soluble dimethylimidazolium dimethyl phosphate ([MMIm][Me2PO4]) ionic liquid. In order to circumvent this problem, the enzyme was chemically modified by cations usually present in ionic liquids: cholinium (1), hydroxyethyl-methylimidazolium (2) and hydroxypropyl-methylimidazolium (3) cations were activated with carbonyldiimidazole before being reacted with the FDH leading to a heterogeneous population of 6–7 biocatalysts. FDH modified by (1) or (3) led to 3–9 modifications while FDH modified by (2) led to 6 proteins presenting 7–12 grafted cations. Specific activity of the modified enzymes was decreased by a 2.5–3-fold factor (0.10–0.15 μmol min−1 mg−1) compared to the non-modified FDH (0.33 μmol min−1 mg−1) when assayed in carbonate buffer (pH 9.7, 25 mM). After modification, the FDH still present 0.06 μmol min−1 mg−1 in 70% [MMIm][Me2PO4] (v:v) (30–45% of their activity in aqueous buffer) while the native enzyme is inactive at this ionic liquid concentration, proving the efficiency of this strategy. The half-life of the modified enzyme is also increased by a 5-fold factor after modification by (1) (t1/2 of 9 days) and by a 3-fold factor after modification by (2) or (3) (t1/2 of 6 and 5 days respectively) in aqueous solution. When stored in 37.5% [MMIm][Me2PO4] (v:v), both modified and unmodified FDH have an increased half-life (t1/2 of 6–9 days). This grafting strategy is found to be good methods to mimic and study the stabilizing effect of ionic liquids on enzymes.  相似文献   

9.
The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4′-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The Km values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4′-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20–30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20–30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.  相似文献   

10.
Polycaprolactone (PCL) was synthesized by ring-opening polymerization of ε-caprolactone through two different enzymatic processes. The lipase from Candida antarctica B, immobilized on macroporous acrylic acid beads, was employed either untreated or coated with small amounts of ionic liquids (ILs). Monocationic ionic liquids, [C n MIm][NTf2] (n = 2, 6, 12), as well as a dicationic ionic liquid, ([C4(C6Im)2][NTf2]2), were used to coat the immobilized lipase and also as the reaction medium. In both methods, the polarity, anion of the ILs concentration and viscosity strongly influenced the reaction. Coating the immobilized enzyme with ILs improved catalytic activity and less ILs was required to produce PCL with a higher molecular weight and reaction yield. At 60 °C and ILs/Novozyme-435 coating ratio of 3:1 (w/w) for 48 h, the highest M w and reaction yield of PCL were 35,600 g/mol and 62 % in the case of [C12MIm][NTf2], while the M w and reaction yield of PCL was 20,300 g/mol and 54 % with [C12MIm][NTf2] and catalyzed by untreated lipase.  相似文献   

11.
GH10 xylanase from Thermoascus aurantiacus strain SL16W (TasXyn10A) showed high stability and activity up to 70–75 °C. The enzyme’s half-lives were 101 h, 65 h, 63 min and 6 min at 60, 70, 75 and 80 °C, respectively. The melting point (T m), as measured by DSC, was 78.5 °C, which is in line with a strong activity decrease at 75–80 °C. The biomass-dissolving ionic liquid 1-ethyl-3-methylimidazolium acetate ([emim]OAc) in 30 % concentration had a small effect on the stability of TasXyn10A; T m decreased by only 5 °C. It was also observed that [emim]OAc inhibited much less GH10 xylanase (TasXyn10A) than the studied GH11 xylanases. The K m of TasXyn10A increased 3.5-fold in 15 % [emim]OAc with xylan as the substrate, whereas the approximate level of V max was not altered. The inhibition of enzyme activity by [emim]OAc was lesser at higher substrate concentrations. Therefore, high solid concentrations in industrial conditions may mitigate the inhibition of enzyme activity by ionic liquids. Molecular docking experiments indicated that the [emim] cation has major binding sites near the catalytic residues but in lower amounts in GH10 than in GH11 xylanases. Therefore, [emim] cation likely competes with the substrate when binding to the active site. The docking results indicated why the effect is lower in GH10.  相似文献   

12.
Reduction of the single disulfide bond in bovine carboxypeptidase A (Cox) and alkylation of the resulting thiols yielded a modified enzyme containing 1.8 carboxymethylcysteine residues per molecule which exhibited 97 and 80% of native esterase and peptidase activities, respectively. Effects of inhibitors and an activator on peptidase activity were similar to those observed with the native enzyme suggesting minimal alteration of the active site. However, unlike the native enzyme, the modified enzyme underwent rapid inactivation above 15 °C. Similar results were obtained on reduction and alkylation of the single allotype, carboxypeptidase Aβval. In contrast, modification of carboxypeptidase A (Anson) resulted in lower carboxymethylcysteine contents and large losses in enzymatic activity. This difference is interpreted in terms of the lower conformational stability of carboxypeptidase Aγ, the main constituent of carboxypeptidase A (Anson) [Petra and Neurath (1968) Biochemistry8, 2466].  相似文献   

13.
《Bioorganic chemistry》1986,14(3):242-248
Incubation of Escherichia coli glutamine synthetase with thiourea trioxide resulted in partial inactivation of the enzyme. This reagent specifically modifies lysine residues to form homoarginine. By amino acid analysis 2.3 ± 0.3 residues of homoarginine are produced per enzyme subunit after treatment with thiourea trioxide. Previously we determined that thiourea dioxide totally inactivated glutamine synthetase and modified both lysine and histidine residues (J. Colanduoni and J. J. Villafranca (1985) J. Biol. Chem. 260, 15,042–15,050). Thiourea trioxide reacted with the same lysine residues of glutamine synthetase as thiourea dioxide. The Km values for the thiourea trioxide modified enzyme were determined and are 210 ± 30 μm and 10 ± 1 mm for ATP and glutamate, respectively. Both values are about threefold higher than for native enzyme assayed under the same conditions. Fluorescence titrations of native and thiourea trioxide labeled enzyme showed that ATP binding was virtually unchanged by the modification while glutamate and methionine sulfoximine bound about twofold more weakly to the modified enzyme.  相似文献   

14.
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.  相似文献   

15.
A non-toxic, direct-acting fibrinolytic enzyme, FCF-11, from a newly isolated Bacillus amyloliquefaciens FCF-11 was purified, characterized and assayed both in vitro and in vivo for its thrombolytic potential. Corn husk was used as for the first time as the sole carbon/nitrogen source for enzyme production. The molecular weight of the purified enzyme was 18.2 kDa and purification increased its specific activity 443.5-fold with a recovery of 17 %. Maximal activity was attained at a temperature of 40 °C and pH of 8.0. Additionally the isoelectric point of this protein was 10 ± 0.2. Tosyl lysine chloromethyl ketone, phenylmethylsulphonyl fluoride, soybean trypsin inhibitor, and aprotinin highly repressed this activity. The presence of ethylenediaminetetraacetic acid, and two metalloprotease inhibitors, 2,2′-bipyridine and o-phenanthroline, didn’t affect the enzymatic activity. Furthermore, it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like serine protease. Its apparent K m and V max for the synthetic substrate N-Suc-Phe-pNA were 0.45 mM and 8.26 μmoles/mg/min, respectively. FCF-11 showed direct action upon blood clots in vitro and prolonged the blood clotting time to 4.1-fold, suggesting this enzyme be a beneficial thrombolytic agent especially, with regard with low molecular weight and non specificity to other plasma proteins. FCF-11 could not degrade collagen and was non-cytotoxic to HT29 cells or mammalian erythrocytes. Further, enzyme at a dose of 2 mg/kg was devoid of toxicity as well as hemorrhagic activity on BALB/c mouse model, supporting its suitability for the development of a better and safer thrombolytic drug.  相似文献   

16.
The catalytic activity of α-chymotrypsin in the enzymatic peptide synthesis of N-acetyl-l-tryptophan ethyl ester with glycyl glycinamide was examined in ionic liquids and organic solvents. The water content in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) affected the initial rates of peptide synthesis and hydrolysis. The activity of α-chymotrypsin was influenced by a kind of anions consisting of the same cation, [emim], when an ionic liquid was used as a solvent. The initial rate of peptide synthesis was improved 16-fold by changing from an organic solvent, acetonitrile, to an ionic liquid, [emim][FSI], at 25 °C. The activity of α-chymotrypsin in the peptide synthesis in [emim][FSI] was 17 times greater than that in acetonitrile at 60 °C, although the activity of α-chymotrypsin in the peptide synthesis gradually decreased with an increase in reaction temperature in [emim][FSI], similar to organic solvents. Moreover, α-chymotrypsin exhibited activity in [emim][FSI] and [emim][PF6] at 80 °C.  相似文献   

17.
Aryl sulfatase A (aryl sulfate sulfohydrolase EC 3.1.6.1) has been purified > 10,000-fold from rabbit liver; by disc gel electrophoresis the enzyme appears homogeneous. Various properties of the enzyme have been determined and comparisons are made with other aryl sulfatases. Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is made up of monomers of molecular weight ~ 70,000. At pH 7.4 the enzyme exists as a dimer whereas a tetrameric form predominates at pH 4.8.The enzyme exhibits the anomalous kinetics often observed with aryl sulfatase A from mammalian tissues (the enzyme is modified to an inactive form while degrading substrate and the inactive form can be reactivated by sulfate ion). The enzyme activity has been studied under a variety of reaction conditions. Two pH optima are observed and neither enzyme concentration or changes in ionic strength appear to have an effect on the relative magnitudes of the optima. Aryl sulfatase A is competitively inhibited by potassium sulfate, potassium phosphate, and sodium sulfite (Ki = 2.9 × 10?3 M, 3.4 × 10?5 M, and 1.1 × 10?6 M, respectively). Kinetic constants for some substituted phenyl sulfate esters have been determined. The variation in V is not consistent with a reaction mechanism involving a rate-limiting breakdown of a common intermediate.The inactive (modified) form of the enzyme has been isolated from reaction mixtures containing aryl sulfatase A and substrate. A procedure is presented for determining the relative amount of modified and native enzyme in these preparations. In the presence of substrate, sulfate displaces the equilibrium between native and modified enzyme in favor of native enzyme. In the absence of substrate neither sulfate or phosphate have an effect on the equilibrium. A study is made of the temperature dependence of the process in which the modified enzyme is converted back to native enzyme. The relatively small entropy of activation for the conversion of the modified to the native form (ΔS3 = ?8 cal/mole deg) does not seem to be consistent with a major modification of protein conformation.  相似文献   

18.
Lipase-catalyzed alcoholysis was investigated in three different ionic liquids. Lyophilized native lipase had a low activity in all the ionic liquids but a poly(ethylene glycol) (PEG)-lipase complex (with a molar ratio of the polymer/enzyme of 10:1) had an increased activity of over 14-fold. Of several lipases tested, PEG-lipase PS (from Pseudomonas cepacia) exhibited the highest activity (1.07 mmol/(h g–1 protein)) in 1-octyl-3-methylimidazolium hexafluorophosphate.  相似文献   

19.
The preservation of activity of extracellular enzymes in soil is presently associated with their immobilization on organic or inorganic carriers. Enzyme immobilization results, however, in a significant decrease in enzymatic activity. In the present work, the mechanism responsible for promotion of the catalytic activity was revealed, as well as the favorable effect of low-molecular alkylhydrozybenzenes of the class of alkylresorcinols, which are common in soil organic matter, on stability of immobilized enzymes (exemplified by amylases) by their post-translational modification. Optimal conditions (enzyme to sorbent ratio, pH optimum, CaCl2 concentration, and sorption time) for amylase sorption on a biological sorbent (yeast cell walls) were determined and decreased activity of the immobilized enzyme compared to its dissolved state was confirmed. Alkylresorcinols (C7AHB) at concentrations of 1.6 to 80 mM were found to cause an increase of amylase activity both in the case of already sorbed enzymes (by 30%) and in the case of a free dissolved enzyme with its subsequent immobilization (by 50–60%). In both cases, the optimal C7AHB concentration was 16 mM. Amylase stability was determined for C7AHB-modified and unmodified enzymes immobilized on the biological sorbent after two cycles of freezing (–20°C) and thawing (4°C). Inverse dependence was revealed between increasing stability of C7AHB-modified enzymes and an increase in their activity, as well as higher stability of immobilized modified amylases than of the dissolved modified enzyme. Investigation of the effect of C7HOB-modification in the preservation of activity in immobilized amylases after four freeze–thaw cycles revealed: (1) better preservation of activity by the modified immobilized enzymes compared to immobilized ones; (2) differences in the dynamics of activity loss within compared pairs, with activity of immobilized amylases decreasing after the second cycle to a lower level (42%) than activity of the modified immobilized enzymes after the fourth cycle (48%). These results demonstrate that in the preservation of activity of extracellular enzymes in soil both stabilization mechanisms are of importance: immobilization on organic carriers and modification of the enzyme conformation by low-molecular compounds with the functions of chemical chaperones.  相似文献   

20.
Effect of chemical modification of horseradish peroxidase lysine epsilon-amino groups by propionic, butyric, valeric, succinic anhydrides and trinitrobenzolsulfonic acid (TNBS) on catalytic properties of the enzyme is investigated. All the preparations of modified peroxidase have 100% peroxidase activity for o-dianizidine at pH 7.0, which indicates the absence of lysine epsilon-amino group in the enzyme active site. pH-dependencies of modified peroxidase relative activity are studied; modification by anhydrides of monobasic acids is not found to result in changes of the relative activity pH-profile, while modification by succinic anhydride widens it. Absorption and circular dichoism spectra of native and modified peroxidase within 260--270 nm are obtained, some changes in the enzyme tertiary structure after its epsilon-amino groups modification are observed. Modification of four epsilon-amino groups by buturic and succinic anhydrides and of three epsilon-amino groups by TNBS is found to increase the regidity of protein surrounding of heme, and modification of six epsilon-amino groups by TNBS results in more unwrapped enzyme structure as compared with its native molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号