首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundZoonoses are common causes of human and livestock illness in Tanzania. Previous studies have shown that brucellosis, leptospirosis, and Q fever account for a large proportion of human febrile illness in northern Tanzania, yet they are infrequently diagnosed. We conducted this study to assess awareness and knowledge regarding selected zoonoses among healthcare providers in Moshi, Tanzania; to determine what diagnostic and treatment protocols are utilized; and obtain insights into contextual factors contributing to the apparent under-diagnosis of zoonoses.Methodology/ResultsWe conducted a questionnaire about zoonoses knowledge, case reporting, and testing with 52 human health practitioners and 10 livestock health providers. Immediately following questionnaire administration, we conducted semi-structured interviews with 60 of these respondents, using the findings of a previous fever etiology study to prompt conversation. Sixty respondents (97%) had heard of brucellosis, 26 (42%) leptospirosis, and 20 (32%) Q fever. Animal sector respondents reported seeing cases of animal brucellosis (4), rabies (4), and anthrax (3) in the previous 12 months. Human sector respondents reported cases of human brucellosis (15, 29%), rabies (9, 18%) and anthrax (6, 12%). None reported leptospirosis or Q fever cases. Nineteen respondents were aware of a local diagnostic test for human brucellosis. Reports of tests for human leptospirosis or Q fever, or for any of the study pathogens in animals, were rare. Many respondents expressed awareness of malaria over-diagnosis and zoonoses under-diagnosis, and many identified low knowledge and testing capacity as reasons for zoonoses under-diagnosis.ConclusionsThis study revealed differences in knowledge of different zoonoses and low case report frequencies of brucellosis, leptospirosis, and Q fever. There was a lack of known diagnostic services for leptospirosis and Q fever. These findings emphasize a need for improved diagnostic capacity alongside healthcare provider education and improved clinical guidelines for syndrome-based disease management to provoke diagnostic consideration of locally relevant zoonoses in the absence of laboratory confirmation.  相似文献   

2.
Many cactus species have been introduced around the world and have subsequently become major invaders, inducing social and ecological costs. We recorded the distribution of Opuntia stricta in eastern Africa, and conducted 200 household interviews using semi-structured questionnaires to assess local perceptions of O. stricta in Laikipia County, Kenya. Opuntia stricta was widespread and abundant in parts of Kenya, Tanzania and Ethiopia and present at low densities in Uganda. In Laikipia County, pastoralists identified that O. stricta had been present for more than 10 years, and were of the opinion that it was still spreading and increasing in density. Two-thirds of respondents estimated that 50–75% of valuable grazing land had been invaded, and all felt that it contributed to the ill-health and death of livestock. Other negative impacts included reductions in native plant populations, rangeland condition, human health, and mobility of humans and animals. These negative impacts resulted in economic losses of US$ 500–1000 per household per year for 48% of households. Only 20% of respondents reported actively managing O. stricta, yet all respondents believed a reduction in the abundance of this weed would improve well-being. Management interventions are needed to reduce negative impacts.  相似文献   

3.
Evidence suggests that the intracellular bacterial pathogen Coxiella burnetii (which causes Q fever) is widespread, with a near global distribution. While there has been increasing attention to Q fever epidemiology in high-income settings, a recent systematic review highlighted significant gaps in our understanding of the prevalence, spatial distribution and risk factors for Q fever infection across Africa. This research aimed to provide a One Health assessment of Q fever epidemiology in parts of Western and Nyanza Provinces, Western Kenya, in cattle and humans. A cross-sectional survey was conducted: serum samples from 2049 humans and 955 cattle in 416 homesteads were analysed for C. burnetii antibodies. Questionnaires covering demographic, socio-economic and husbandry information were also administered. These data were linked to environmental datasets based on geographical locations (e.g., land cover). Correlation and spatial-cross correlation analyses were applied to assess the potential link between cattle and human seroprevalence. Multilevel regression analysis was used to assess the relationships between a range of socio-economic, demographic and environmental factors and sero-positivity in both humans and animals. The overall sero-prevalence of C. burnetii was 2.5% in humans and 10.5% in cattle, but we found no evidence of correlation between cattle and human seroprevalence either within households, or when incorporating spatial proximity to other households in the survey. Multilevel modelling indicated the importance of several factors for exposure to the organism. Cattle obtained from market (as opposed to those bred in their homestead) and those residing in areas with lower precipitation levels had the highest sero-prevalence. For humans, the youngest age group had the highest odds of seropositivity, variations were observed between ethnic groups, and frequent livestock contact (specifically grazing and dealing with abortion material) was also a risk factor. These results illustrate endemicity of C. burnetii in western Kenya, although prevalence is relatively low. The analysis indicates that while environmental factors may play a role in cattle exposure patterns, human exposure patterns are likely to be driven more strongly by livestock contacts. The implication of livestock markets in cattle exposure risks suggests these may be a suitable target for interventions.  相似文献   

4.
Q fever, caused by Coxiella burnetii, is a serious zoonotic disease in humans with a worldwide distribution. Many species of animals are capable of transmitting C. burnetii, and consequently all veterinary workers are at risk for this disease. An effective Q fever vaccine has been readily available and used in Australia for many years in at-risk groups, and the European Centre for Disease Prevention and Control has recently also called for the use of this vaccine among at-risk groups in Europe. Little is known about attitudes towards this vaccine and vaccine uptake in veterinary workers. This study aimed to determine the Q fever vaccination status of veterinarians and veterinary nurses in Australia and to assess and compare the knowledge and attitudes towards Q fever disease and vaccination of each cohort. An online cross-sectional survey performed in 2014 targeted all veterinarians and veterinary nurses in Australia. Responses from 890 veterinarians and 852 veterinary nurses were obtained. Binary, ordinal and multinomial logistic regression were used to make comparisons between the two cohorts. The results showed that 74% of veterinarians had sought vaccination compared to only 29% of veterinary nurses. Barriers to vaccination among those not vaccinated did not differ between cohorts, and included a lack of perceived risk, financial expense, time constraints, and difficulty in finding a vaccine provider. Poor knowledge and awareness of Q fever disease and vaccination were additional and notable barriers for the veterinary nursing cohort, suggesting veterinary clinics and veterinarians may not be meeting their legal responsibility to educate staff about risks and risk prevention. Further evaluation is needed to identify the drivers behind seeking and recommending vaccination so that recommendations can be made to improve vaccine uptake.  相似文献   

5.

Background

Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.

Methods/Principal Findings

We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.

Conclusions/Significance

C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.  相似文献   

6.
This study of leopard predation on livestock was carried out on the Lolldaiga Hills ranch (200 km2) in the Laikipia District in Kenya between September 1989 and August 1995. The aims of the study were to find out whether leopards depend on livestock as a food resource on the ranch, and to quantify the economic impact of leopards on the livestock production systems. The density of leopards was estimated in three ways, and the biomass density of potential prey for leopards, both wild and domestic. Diet analysis of leopards revealed that leopards are not relying on livestock as an important food resource. To quantify the effects of leopards, an approach used in the economic assessment of agricultural development schemes was adopted ( Gittinger, 1982 ) and models were derived by following those criteria. It was found that leopards, not being persecuted, live at a relatively high density on the ranch but have less of an adverse impact on livestock than might be expected. Wildlife as a food resource for leopards and a buffer against the killing of livestock could be of benefit on a working ranch to reduce the economic impact of predators on the production system.  相似文献   

7.
Coxiella burnetii is an obligate intracellular bacterium that causes the zoonotic disease Q fever. Because C. burnetii is highly infectious, can survive under a variety of environmental conditions, and has been weaponized in the past, it is classified as a select agent and is considered a potential bioweapon. The agent is known to be present in domestic livestock and in wild animal populations, but the background levels of C. burnetii in the environment have not been reported. To better understand the amount of C. burnetii present in the environment of the United States, more than 1,600 environmental samples were collected from six geographically diverse parts of the United States in the years 2006 to 2008. DNA was purified from these samples, and the presence of C. burnetii DNA was evaluated by quantitative PCR of the IS1111 repetitive element. Overall, 23.8% of the samples were positive for C. burnetii DNA. The prevalence in the different states ranged from 6 to 44%. C. burnetii DNA was detected in locations with livestock and also in locations with primarily human activity (post offices, stores, schools, etc.). This study demonstrates that C. burnetii is fairly common in the environment in the United States, and any analysis of C. burnetii after a suspected intentional release should be interpreted in light of these background levels. It also suggests that human exposure to C. burnetii may be more common than what is suggested by the number of reported cases of Q fever.The Gram-negative obligate intracellular bacterium Coxiella burnetii can infect humans and cause Q fever, an acute febrile illness (15, 17). Most cases of Q fever have fairly nonspecific symptoms, such as high fever, headache, myalgia, cough, and fatigue (29). Over one-third of patients may show signs of pneumonia or hepatitis (17). Acute cases typically resolve in 1 to 2 weeks, but a small percentage of Q fever cases result in a chronic infection that can present as endocarditis and be life-threatening (12).Q fever occurs worldwide, and numerous natural outbreaks have been reported in the United States (2, 23, 25) and other countries (5, 11, 18, 20, 22, 24). An ongoing natural outbreak in the Netherlands resulted in more than 2,000 cases of Q fever from 2007 to 2009 (27). In the United States Q fever became a nationally notifiable disease in 1999, and increasing numbers of cases have been reported to the CDC in recent years. However, the highest number of annual cases in the United States so far has been 171, reported in 2007 (8). Although this is a fairly small number of reported cases, it is possible that the number of actual cases in the United States is much higher. The relatively nonspecific nature of Q fever symptoms makes the disease difficult to diagnose, and people infected with C. burnetii are likely to show a diversity of symptoms with variable severity. The idea that Q fever is underreported is supported by our recent data using serum samples from the National Health and Nutrition Examination Survey (NHANES) to determine that the seroprevalence in the United States among people who are ≥20 years old is 3.1% (1).A common mechanism for people to become infected with C. burnetii is the inhalation of aerosolized bacteria. Potential sources for aerosolized C. burnetii are livestock and other animals. It is known that many herds of livestock are infected with C. burnetii and that seroprevalence rates in a variety of wild animal species can be quite high (17). Infected livestock herds do not typically show clinical signs of infection, but surges in abortion rates have been reported, particularly with goats (9, 10, 17). It is known that C. burnetii can replicate to high levels in the placenta of infected animals and that infectious C. burnetii can be spread to humans during parturition (9). The prevalence of C. burnetii in animals makes contact with animals a likely risk factor for Q fever. For example, the ongoing Q fever outbreak in the Netherlands has been linked to Q fever infections in goat farms (27), and we have recently found that 22.2% of a group of 508 veterinarians had antibodies against C. burnetii, a much higher seroprevalence than in the general U.S. population (31).C. burnetii exists as a replicating large-cell variant (LCV), but nonreplicating bacteria can form a more stable small-cell variant (SCV) (4). Although it is not an endospore, the SCV form of Coxiella is known to be very stable under a variety of conditions (16). C. burnetii is also highly infectious, with a dose of 1 to 10 organisms capable of causing Q fever in humans (30). These unique features of C. burnetii, along with its aerosol route of transmission, have led to the designation of C. burnetii as a category B bioterrorism weapon and inclusion on the list of select agents. The potential for the use of C. burnetii as a bioweapon was explored in detail by the U.S. bioweapons program of the 1950s and 1960s (26). Although not typically lethal, C. burnetii is considered a threat due to its ability to cause widespread debilitating illness. Indeed, many U.S. soldiers returning from Iraq between 2005 and 2008 suffered from Q fever while deployed (6, 7). These cases are suspected to be naturally acquired infections.The potential for both intentional releases and natural outbreaks makes it important to understand the presence of C. burnetii in the environment. Investigations of the source of Q fever cases will include a determination of the presence of C. burnetii in the environment from which the bacteria may have been acquired. The purpose of this study was to analyze a large number of samples across a wide geographic distribution in the United States and to establish a baseline for the presence of C. burnetii in different regions of the country.  相似文献   

8.

Background

The clinical characteristics of Q fever are poorly identified in the tropics. Fever with pneumonia or hepatitis are the dominant presentations of acute Q fever, which exhibits geographic variability. In southern Taiwan, which is located in a tropical region, the role of Q fever in community-acquired pneumonia (CAP) has never been investigated.

Methodology/Principal Findings

During the study period, May 2012 to April 2013, 166 cases of adult CAP and 15 cases of acute Q fever were prospectively investigated. Cultures of clinical specimens, urine antigen tests for Streptococcus pneumoniae and Legionella pneumophila, and paired serologic assessments for Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Q fever (Coxiella burnetii) were used for identifying pathogens associated with CAP. From April 2004 to April 2013 (the pre-study period), 122 cases of acute Q fever were also included retrospectively for analysis. The geographic distribution of Q fever and CAP cases was similar. Q fever cases were identified in warmer seasons and younger ages than CAP. Based on multivariate analysis, male gender, chills, thrombocytopenia, and elevated liver enzymes were independent characteristics associated with Q fever. In patients with Q fever, 95% and 13.5% of cases presented with hepatitis and pneumonia, respectively. Twelve (7.2%) cases of CAP were seropositive for C. burnetii antibodies, but none of them had acute Q fever. Among CAP cases, 22.9% had a CURB-65 score ≧2, and 45.8% had identifiable pathogens. Haemophilus parainfluenzae (14.5%), S. pneumoniae (6.6%), Pseudomonas aeruginosa (4.8%), and Klebsiella pneumoniae (3.0%) were the most common pathogens identified by cultures or urine antigen tests. Moreover, M. pneumoniae, C. pneumoniae, and co-infection with 2 pathogens accounted for 9.0%, 7.8%, and 1.8%, respectively.

Conclusions

In southern Taiwan, Q fever is an endemic disease with hepatitis as the major presentation and is not a common etiology of CAP.  相似文献   

9.
Camels are increasingly becoming the livestock of choice for pastoralists reeling from effects of climate change in semi-arid and arid parts of Kenya. As the population of camels rises, better understanding of their role in the epidemiology of zoonotic diseases in Kenya is a public health priority. Rift Valley fever (RVF), brucellosis and Q fever are three of the top priority diseases in the country but the involvement of camels in the transmission dynamics of these diseases is poorly understood. We analyzed 120 camel serum samples from northern Kenya to establish seropositivity rates of the three pathogens and to characterize the infecting Brucella species using molecular assays. We found seropositivity of 24.2% (95% confidence interval [CI]: 16.5–31.8%) for Brucella, 20.8% (95% CI: 13.6–28.1%) and 14.2% (95% CI: 7.9–20.4%) for Coxiella burnetii and Rift valley fever virus respectively. We found 27.5% (95% CI: 19.5–35.5%) of the animals were seropositive for at least one pathogen and 13.3% (95% CI: 7.2–19.4%) were seropositive for at least two pathogens. B. melitensis was the only Brucella spp. detected. The high sero-positivity rates are indicative of the endemicity of these pathogens among camel populations and the possible role the species has in the epidemiology of zoonotic diseases. Considering the strong association between human infection and contact with livestock for most zoonotic infections in Kenya, there is immediate need to conduct further research to determine the role of camels in transmission of these zoonoses to other livestock species and humans. This information will be useful for designing more effective surveillance systems and intervention measures.  相似文献   

10.
Zoonotic diseases can be occupational hazards to people who work in close contact with animals or their carcasses. In this cross-sectional study, 190 sera were collected from butchers and slaughterhouse workers in different regions of the Sistan va Baluchestan province, in Iran in 2011. A questionnaire was filled for each participant to document personal and behavioural information. The sera were tested for detection of specific IgG antibodies against brucellosis, leptospirosis, and Q fever (phase I and II) using commercial enzyme-linked immunosorbent assays (ELISA). The seroprevalence of brucellosis was 7.9%, leptospirosis 23.4%, and phase I and II of Q fever were 18.1% and 14.4%, respectively. The seroprevalence of Q fever and leptospirosis, but not brucellosis, varied among regions within the province (p = 0.01). Additionally, a significant relationship was found between seropositivity of Q fever and camel slaughtering (p = 0.04). Reduced seropositivity rate of brucellosis was associated with use of personal protective equipment (PPE) (p = 0.004). This study shows that brucellosis, leptospirosis and Q fever occur among butchers and slaughterhouse workers in this area.  相似文献   

11.
Q fever is a zoonotic disease caused by inhalation of the bacterium Coxiella burnetii. Ruminant livestock are common reservoirs for C. burnetii, and bacteria present in aerosols derived from the waste of infected animals can infect humans. The significance of infection from material deposited in the environment versus transmission directly from infected animals is not known. In 2011, an outbreak of Q fever cases on farms in Washington and Montana was associated with infected goats. A study was undertaken to investigate the quantity and spatial distribution of C. burnetii in the environment of these goat farms. Soil, vacuum, and sponge samples collected on seven farms epidemiologically linked to the outbreak were tested for the presence of C. burnetii DNA by quantitative PCR. Overall, 70.1% of the samples were positive for C. burnetii. All farms had positive samples, but the quantity of C. burnetii varied widely between samples and between farms. High quantities of C. burnetii DNA were in goat housing/birthing areas, and only small quantities were found in samples collected more than 50 m from these areas. Follow-up sampling at one of the farms 1 year after the outbreak found small quantities of C. burnetii DNA in air samples and large quantities of C. burnetii persisting in soil and vacuum samples. The results suggest that the highest concentrations of environmental C. burnetii are found in goat birthing areas and that contamination of other areas is mostly associated with human movement.  相似文献   

12.
Q fever is serologically cross-reactive with other intracellular microorganisms. However, studies of the serological status of Mycoplasma pneumoniae and Chlamydophila pneumoniae during Q fever are rare. We conducted a retrospective serological study of M. pneumoniae and C. pneumoniae by enzyme-linked immunosorbent assay (ELISA), a method widely used in clinical practice, in 102 cases of acute Q fever, 39 cases of scrub typhus, and 14 cases of murine typhus. The seropositive (57.8%, 7.7%, and 0%, p<0.001) and seroconversion rates (50.6%, 8.8%, and 0%, p<0.001) of M. pneumoniae IgM, but not M. pneumoniae IgG and C. pneumoniae IgG/IgM, in acute Q fever were significantly higher than in scrub typhus and murine typhus. Another ELISA kit also revealed a high seropositivity (49.5%) and seroconversion rate (33.3%) of M. pneumoniae IgM in acute Q fever. The temporal and age distributions of patients with positive M. pneumoniae IgM were not typical of M. pneumoniae pneumonia. Comparing acute Q fever patients who were positive for M. pneumoniae IgM (59 cases) with those who were negative (43 cases), the demographic characteristics and underlying diseases were not different. In addition, the clinical manifestations associated with atypical pneumonia, including headache (71.2% vs. 81.4%, p=0.255), sore throat (8.5% vs. 16.3%, p=0.351), cough (35.6% vs. 23.3%, p=0.199), and chest x-ray suggesting pneumonia (19.3% vs. 9.5%, p=0.258), were unchanged between the two groups. Clinicians should be aware of the high seroprevalence of M. pneumoniae IgM in acute Q fever, particularly with ELISA kits, which can lead to misdiagnosis, overestimations of the prevalence of M. pneumoniae pneumonia, and underestimations of the true prevalence of Q fever pneumonia.  相似文献   

13.
The article describes the epidemiological characteristics of Q fever in Croatia, during the period before and after the Homeland War. In the ten years prior to the Homeland War (1983-1992) 1053 cases of Q fever were recorded, 16.2% (171) of which on islands and in coastal areas. In the period after the Homeland War (1995-2008), a total of 654 cases was recorded, 59.9% (392) of which on islands and in coastal areas. In addition to reduced incidence, geographic distribution of the disease also changed. Before the war, the highest morbidity rate was recorded in the Sisak-Moslavina County. After the war, the Split-Dalmatia County recorded the highest morbidity rate because in the post-war period sheep from Bosnia and Herzegovina went to this county for winter grazing. The disease might be relevant to the Croatian Army and other armed forces that stay in Croatia as part of NATO forces.  相似文献   

14.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently identified virus causing severe viral respiratory illness in people. Little is known about the reservoir in the Horn of Africa. In Kenya, where no human MERS cases have been reported, our survey of 335 dromedary camels, representing nine herds in Laikipia County, showed a high seroprevalence (46.9%) to MERS-CoV antibodies. Between herd differences were present (14.3%– 82.9%), but was not related to management type or herd isolation. Further research should focus on identifying similarity between MERS-CoV viral isolates in Kenya and clinical isolates from the Middle East and elsewhere.  相似文献   

15.
The acute disease antigen A (adaA) gene is believed to be associated with Coxiella burnetii strains causing acute Q fever. The detailed analysis of the adaA genomic region of 23 human- and 86 animal-derived C. burnetii isolates presented in this study reveals a much more polymorphic appearance and distribution of the adaA gene, resulting in a classification of C. burnetii strains of better differentiation than previously anticipated. Three different genomic variants of the adaA gene were identified which could be detected in isolates from acute and chronic patients, rendering the association of adaA positive strains with acute Q fever disease disputable. In addition, all adaA positive strains in humans and animals showed the occurrence of the QpH1 plasmid. All adaA positive isolates of acute human patients except one showed a distinct SNP variation at position 431, also predominant in sheep strains, which correlates well with the observation that sheep are a major source of human infection. Furthermore, the phylogenetic analysis of the adaA gene revealed three deletion events and supported the hypothesis that strain Dugway 5J108-111 might be the ancestor of all known C. burnetii strains. Based on our findings, we could confirm the QpDV group and we were able to define a new genotypic cluster. The adaA gene polymorphisms shown here improve molecular typing of Q fever, and give new insights into microevolutionary adaption processes in C. burnetii.  相似文献   

16.
The vast majority of interspecific interactions are competitive or exploitative. Yet, some positive interspecies interactions exist, where one (commensalism) or both (mutualism) species benefit. One such interaction is cleaning mutualisms, whereby a cleaner removes parasites from a client. In this note, we document the novel observation of a black‐cheeked waxbill (Brunhilda charmosyna) appearing to clean a Kirk''s dik‐dik (Madoqua kirkii), at the Mpala Research Centre in Laikipia County, Kenya. The purported cleaning took place for over one minute and is notable firstly for the dik‐dik remaining still for the duration of cleaning and secondly for involving two species that are much smaller than those traditionally involved in bird–mammal cleaning interactions. Unfortunately, no further cleaning events were subsequently observed, raising questions about whether this record was opportunistic or a regular occurrence. Future observations may reveal whether this behavior is widespread and whether it involves other small passerines.  相似文献   

17.
Coxiella burnetii 109, with a 2.03-Mb genome, is a doxycycline-resistant human isolate that was isolated from the cardiac valve of a German male patient with Q fever endocarditis who died during the course of the treatment due to the bacterium''s resistance to doxycycline. This new genome can be useful for future comparative genomic or Q fever studies.  相似文献   

18.
BackgroundIn South Korea, the number of Q fever cases has rapidly increased since 2015. Therefore, this study aimed to characterize the epidemiological and clinical features of Q fever in South Korea between 2011 and 2017.Methods/Principal findingsWe analyzed the epidemiological investigations and reviewed the medical records from all hospitals that had reported at least one case of Q fever from 2011 to 2017. We also conducted an online survey to investigate physicians’ awareness regarding how to appropriately diagnose and manage Q fever. The nationwide incidence rate of Q fever was annually 0.07 cases per 100,000 persons. However, there has been a sharp increase in its incidence, reaching up to 0.19 cases per 100,000 persons in 2017. Q fever sporadically occurred across the country, with the highest incidences in Chungbuk (0.53 cases per 100,000 persons per year) and Chungnam (0.27 cases per 100,000 persons per year) areas. Patients with acute Q fever primarily presented with mild illnesses such as hepatitis (64.5%) and isolated febrile illness (24.0%), whereas those with chronic Q fever were likely to undergo surgery (41.2%) and had a high mortality rate (23.5%). Follow-up for 6 months after acute Q fever was performed by 24.0% of the physician respondents, and only 22.3% of them reported that clinical and serological evaluations were required after acute Q fever diagnosis.ConclusionsQ fever is becoming an endemic disease in the midwestern area of South Korea. Given the clinical severity and mortality of chronic Q fever, physicians should be made aware of appropriate diagnosis and management strategies for Q fever.  相似文献   

19.
Q fever and brucellosis are zoonoses that cause fever and other systemic clinical signs in humans; their occurrences are neglected and the differential diagnosis for some diseases is disregarded. This study aimed to investigate the seropositivity for Coxiella burnetii and Brucella spp. antibodies in patients suspected of dengue from 38 municipalities in the state of São Paulo, Brazil. The samples (n = 604) were obtained by convenience from the Adolfo Lutz Institute serum bank. Sera were subjected to an indirect immunofluorescence assay (IFA) using in-house and commercial diagnostic protocols to evaluate C. burnetii positivity. For Brucella spp., sera were subjected to rapid plate serum agglutination with buffered acidified antigen (AAT), slow tube serum agglutination (SAL), and 2-mercaptoethanol (2-ME) techniques. Associations and statistical inferences of the results were performed by logistic regression according to the clinical and demographic variables collected from the patients. Statistical analyses were performed using Statistical Analysis Software (SAS) and associations were considered when p value was <0.05. In all, 129 patients showed positive results for Q fever, indicating a seropositivity of 21.4% (95% CI 18.15–24.85). Patients with 14–20 days of symptoms had 2.12 (95% CI 1.34–3.35) times more chances of being seropositive for Q fever than patients with 7–13 days, and patients with 21–27 days of fever had 2.62 (95% CI 1.27–5.41) times more chances of being seropositive for Q fever than patients with 7–13 days. For the other variables analyzed, there were no significant associations between the groups. No positivity for brucellosis was observed. This is the most comprehensive study of people seropositive for Q fever in São Paulo state and provides additional data for the medical community in Brazil. It is suggested that Q fever may be an important differential diagnosis of febrile illnesses in the region, demanding the government’s attention and investment in health.  相似文献   

20.
Since 2007, Q fever has become a major public health problem in the Netherlands and goats were the most likely source of the human outbreaks in 2007, 2008 and 2009. Little was known about the consequences of these outbreaks for those professional care providers directly involved. The aim of this survey was to estimate the seroprevalence of antibodies against C. burnetii among Dutch livestock veterinarians and to determine possible risk factors. Single blood samples from 189 veterinarians, including veterinary students in their final year, were collected at a veterinary conference and a questionnaire was filled in by each participant. The blood samples were screened for IgG antibodies against phase I and phase II antigen of C. burnetii using an indirect immunofluorescent assay, and for IgM antibodies using an ELISA. Antibodies against C. burnetii were detected in 123 (65.1%) out of 189 veterinarians. Independent risk factors associated with seropositivity were number of hours with animal contact per week, number of years graduated as veterinarian, rural or sub urban living area, being a practicing veterinarian, and occupational contact with swine. Livestock veterinarians should be aware of this risk to acquire an infection with C. burnetii. Physicians should consider potential infection with C. burnetii when treating occupational risk groups, bearing in mind that the burden of disease among veterinarians remains uncertain. Vaccination of occupational risk groups should be debated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号