首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

2.
Biomediated silver nanoparticle were synthesized using a cell free extract of a soil bacterium, Exiguobacterium mexicanum PR 10.6. The silver nanoparticles were characterised using UV–Vis spectroscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles ranged from 5 to 40 nm. Extracellular polymeric substance played a critical role in the reduction of silver ion and nanoparticle stabilisation when using the cell free extract. The synthesis using E. mexicanum is an effective eco-friendly, rapid method for silver nanoparticle synthesis within 1 h.  相似文献   

3.
Gold nanoparticles have enormous applications in cancer treatment, drug delivery and nanobiosensor due to their biocompatibility. Biological route of synthesis of metal nanoparticles are cost effective and eco-friendly. Acinetobacter sp. SW 30 isolated from activated sewage sludge produced cell bound as well as intracellular gold nanoparticles when challenged with HAuCl4 salt solution. We first time report the optimization of various physiological parameters such as age of culture, cell density and physicochemical parameters viz HAuCl4 concentration, temperature and pH which influence the synthesis of gold nanoparticles. Gold nanoparticles thus produced were characterized by various analytical techniques viz. UV–Visible spectroscopy, X-ray diffraction, cyclic voltammetry, transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and dynamic light scattering. Polyhedral gold nanoparticles of size 20 ± 10 nm were synthesized by 24 h grown culture of cell density 2.4 × 109 cfu/ml at 50 °C and pH 9 in 0.5 mM HAuCl4. It was found that most of the gold nanoparticles were released into solution from bacterial cell surface of Acinetobacter sp. at pH 9 and 50 °C.  相似文献   

4.
Silver nanoparticles (AgNPs) were biosynthesized using fungal extract of Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, which produces several ligninolytic enzymes. According to previous studies using fungi, enzymes are involved in nanoparticles synthesis, through the so-called green synthesis process, acting as reducing and capping agents. Understanding which factors could modify nanoparticles’ shape, size and production efficiency is relevant. The results showed that under the protocol used in this work, this strain of Trametes trogii is able to synthesize silver nanoparticles with the addition of silver nitrate (AgNO3) to the fungal extract obtained with an optimal incubation time of 72 h and pH 13, using NaOH to adjust pH. The progress of the reaction was monitored using UV–visible spectroscopy and synthesized AgNPs was characterized by scanning electron microscope (SEM), through in-lens and QBDS detectors, and energy-dispersive X-ray spectroscopy (EDX). Additionally, SPR absorption was modeled using Mie theory and simple nanoparticles and core-shell configurations were studied, to understand the morphology and environment of the nanoparticles. This protocol represents a simple and cheap synthesis in the absence of toxic reagents and under an environmentally friendly condition.  相似文献   

5.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

6.
The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H2PtCl6·6H2O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.  相似文献   

7.
In the present study, we synthesized silver and gold nanoparticles with a particle size of 10–20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436–531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150–180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM–EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10–20 nm) and AuNPs (5–20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.  相似文献   

8.
The leaf extract of Diopyros kaki was used as a reducing agent in the ecofriendly extracellular synthesis of platinum nanoparticles from an aqueous H2PtCl6·6H2O solution. A greater than 90% conversion of platinum ions to nanoparticles was achieved with a reaction temperature of 95°C and a leaf broth concentration of >10%. A variety of methods was used to characterize the platinum nanoparticles synthesized: inductively coupled plasma spectrometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The average particle size ranged from 2 to 12 nm depending on the reaction temperature and concentrations of the leaf broth and PtCl6 2−. FTIR analysis suggests that platinum nanoparticle synthesis using Diopyros kaki is not an enzyme-mediated process. This is the first report of platinum nanoparticle synthesis using a plant extract.  相似文献   

9.
This study presents a special, economically valuable, unprecedented eco-friendly green process for the synthesis of silver nanoparticles. The silver nanoparticles were obtained from a waste material with oil palm biosolid extract as the reducing agent. The use of the oil palm biosolid extract for the nanoparticle synthesis offers the benefit of amenability for large-scale production. An aqueous solution of silver (Ag(+) ) ions was treated with the oil palm biosolid extract for the formation of Ag nanoparticles. The nanometallic dispersion was characterized by surface plasmon absorbance measuring 428 nm. Transmission electron microscopy showed the formation of silver nanoparticles in the range of 5-50 nm. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis of the freeze-dried powder confirmed the formation of metallic silver nanoparticles. Moreover, Fourier Transform Infrared Spectroscopy provided evidence of phenolics or proteins as the biomolecules that were likely responsible for the reduction and capping agent, which helps to increase the stability of the synthesized silver nanoparticles. In addition, we have optimized the production with various parameters.  相似文献   

10.

Background

Gold nanoparticles (AuNPs) have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis.

Results

In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs) production. Stable, monodisperse AuNP formation with around 10?nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy.

Conclusion

The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of AuNP synthesis by marine bacteria.  相似文献   

11.
Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetra id="spar0060">Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetic industries. In the present study, we have optimized a method for biogenic synthesis of gold nanoparticles (AuNPs) from Cladosporium cladosporioides, an endophytic fungus of the seaweed, Sargassumwightii. The identity of the fungus was established by the 18 s rRNA and ITS sequence. The AuNPs synthesized using C. cladosporioides were characterized by UV–vis spectrophotometer, Field Emission Scanning Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Dynamic light scattering, Atomic force microscopy, and Energy dispersive X-ray spectroscopic studies. They were tested for free radical scavenging activity (DPPH and FRAP assay) and antimicrobial activity against a panel of pathogenic microorganisms. The AuNps were within 100 nm as confirmed by the above methods. An attempt was made to understand the mechanism of the gold nanoparticle synthesis using the fungal extract. The present study shows the involvement of NADPH-dependent reductase and phenolic compounds in the bioreduction of the gold metal salts to nanoparticles. The AuNPs showed significant antioxidant as well as the antimicrobial activity. Hence, this study has shown a great potential for the development of a cost effective antimicrobial treatment utilizing biogenic gold nanoparticles.  相似文献   

12.
This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag+ ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag+ ion and 720 min. The UV–Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM–EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.  相似文献   

13.
The biological synthesis methods have been emerging as a promising new approach for production of nanoparticles due to their simplicity and non-toxicity. In the present study, spores of Bacillus athrophaeus were used to achieve the objective of developing a green synthesis method of silver nanoparticles. Enzyme assay revealed that the spores and their heat inactivated forms (microcapsules) were highly active and their enzymatic contents differed from the vegetative cells. Laccase, glucose oxidase, and alkaline phosphatase activities were detected in the dormant forms, but not in the vegetative cells. Although no nanoparticle was produced by active cells of B. athrophaeus, both spores and microcapsules were efficiently capable of reducing the silver ions (Ag+) to elemental silver (Ag0) leading to the formation of nanoparticles from silver nitrate (AgNO3). The presence of biologically synthesized silver nanoparticles was determined by obtaining broad spectra with maximum absorbance at 400 nm in UV–visible spectroscopy. The X-ray diffraction analysis pattern revealed that the nanoscale particles have crystalline nature with various topologies, as confirmed by transmission electron microscopy (TEM). The TEM micrograph showed the nanocrystal structures with dimensions ranging from 5 to 30 nm. Accordingly, the spore mixture could be employed as a factory for detoxification of heavy metals and subsequent production of nanoparticles. This research introduces an environmental friendly and cost effective biotechnological process for the extracellular synthesis of silver nanoparticles using the bacterial spores.  相似文献   

14.
Addition of microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract to the aqueous gold chloride solution yielded stable polyshaped gold nanoparticles of high composition. Microwave-assisted route selected for the preparation of aqueous guava leaf extract was to suppress the enzymatic action. The formation of nanoparticles was understood from the UV–visible and X-ray diffraction studies. The size and shape analysis was done using field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Zeta potential experiment shows that the bio-functionalized gold nanoparticles colloidal solution obtained as above will maintain its stability even after 30 weeks of storage. It is observed that the flavonoids which are separated during microwave heating of extracellular solution of the guava leaves are responsible for the biosynthesis of gold nanoparticles.  相似文献   

15.
Gold nanoparticles with tiny sizes and biostability are particularly essential and are employed in a variety of biomedical applications. Using a reducing agent and a stabilising agent to make gold nanoparticles has been reported in a number of studies. Gold nanoparticles with a particle size of 25.31 nm were synthesized in this study utilising Hylocereus polyrhizus (Red Pitaya) extract, which functions as a reducing and stabilising agent. The extract of Red Pitaya is said to be a powerful antioxidant and anti-cancer agent. Because of its substantial blood biocompatibility and physiological stability, green production of gold nanoparticles with H. polyrhizus fruit extract is an alternative to chemical synthesis and useful for biological and medical applications. The formation and size distribution of gold nanoparticles were confirmed by HPLC, UV-Vis spectrophotometer, X-ray diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, Transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The well-analysed NPs were used in various biological assays, including anti-diabetic, anti-inflammatory, anti-Alzheimer, and antioxidant (DPPH), and cytotoxic investigations. The NPs also showed a dose-dependent cytotoxic activity against HCT-116, HepG2 and MCF-7 cell lines, with IC50 of 100 µg/mL for HCT-116 cells, 155 µg/mL for HepG2, and for MCF-7 cells the value was 165 µg/mL respectively. Finally, the outstanding biocompatibility of Au-NPs has led to the conclusion that they are a promising choice for various biological applications.  相似文献   

16.
A simple and ecofriendly biosynthetic process has been developed for silver nanoparticles using the aqueous extract of gum olibanum (Boswellia serrata), a renewable natural plant biopolymer. The water soluble compounds in the gum serve as dual functional reducing and stabilizing agents. The effect of concentration of gum and silver nitrate; and reaction time on nanoparticle synthesis was studied. The UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction techniques were used to characterize the synthesized nanoparticles. By tuning the reaction conditions, size controlled spherical nanoparticles of around 7.5 ± 3.8 nm was achieved. Using Fourier transform infrared spectroscopy and Raman spectroscopy, a probable mechanism involved in reduction and stabilization of nanoparticles has been explained. The produced silver nanoparticles exhibited substantial antibacterial activity on both the Gram classes of bacteria. By virtue of being biogenic and encapsulated with proteins, these surface functionalized nanoparticles can be easily integrated for various biological applications.  相似文献   

17.
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV–Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.  相似文献   

18.
Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV–visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.  相似文献   

19.
The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV–Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au3+ ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.  相似文献   

20.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号