首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In anaerobic phosphate buffer, pH 6.3-7.5, deoxyhemerythrin is oxidized to semi-methemerythrin (semi-met) by excess sodium nitrite. This oxidation is quantitative as judged by EPR spectroscopy. Further oxidation to methemerythrin is not detected. The absorbance changes of hemerythrin during the oxidation are biphasic. The rate of the faster first phase is linearly dependent on [H+] and [NO2-] suggesting that the oxidant is nitrous acid rather than nitrite. During the slower second phase, the characteristic EPR spectrum of semi-methemerythrin appears. The first phase can be interpreted by a scheme in which nitrous acid transforms deoxyhemerythrin (FeIIFeII) to the semi-met nitrosyl adduct (FeIIFeIIINO) and hydroxide. Independent experiments confirm that the combination of semi-met plus NO produces an EPR-silent adduct. The rates of the absorbance changes for the second phase are nearly independent of nitrite concentration and pH in the range 6.3-7.5. This slower phase involves the transformation of the EPR-silent intermediate to the semi-met nitrite adduct (FeIIFeIIINO2-) and is consistent with rate-limiting dissociation of nitric oxide followed by rapid attachment of nitrite. Nitrite appears to be a unique oxidant of deoxyhemerythrin in that when employed in excess, the final, stable product is semi-met- rather than methemerythrin. The lack of reactivity of ethyl nitrite with deoxyhemerythrin suggests that HONO oxidizes deoxyhemerythrin via an "inner-sphere" process in contrast to oxidants such as Fe(CN)6(3-). A proposed generalization is that excesses of "inner-sphere" oxidants convert deoxy to (semi-met)R, which is stabilized with respect to (semi-met)R, which is stabilized with respect to (semi-met)0 and met because the oxidant and/or a product of the oxidant can bind to the iron site.  相似文献   

2.
P M Robitaille  D M Kurtz 《Biochemistry》1988,27(12):4458-4465
Reported are the first examinations by 31P NMR of erythrocytes containing the non-heme iron O2-carrying protein hemerythrin (Hr). Intact coelomic erythrocytes from the sipunculids Phascolopsis gouldii and Themiste zostericola were shown by 31P NMR to contain O-phosphorylethanolamine and 2-aminoethylphosphonate as the major soluble phosphorus metabolites. This combination of major metabolites appears to be unique to sipunculan erythrocytes. Nucleoside triphosphates and mannose 1-phosphate were present in lower concentrations. The concentration of O-phosphorylethanolamine within P. gouldii erythrocytes was established to be greater than 20 mM. T. zostericola erythrocytes contained relatively high levels of 2-aminoethylphosphonate (on the order of 0.1 M) and lower levels of O-phosphorylethanolamine compared with those of P. gouldii. For P. gouldii and T. zostericola the intracellular pHs were determined to be 7.2 +/- 0.1 and 7.1 +/- 0.1, respectively, in air-equilibrated erythrocytes, and 6.5 +/- 0.1 in anaerobic P. gouldii erythrocytes. O-Phosphorylethanolamine was found to bind weakly to P. gouldii metHr (Kf approximately 7 M-1). This interaction is best characterized by either negative cooperativity or nonspecific binding. O-Phosphorylethanolamine strongly inhibits azide binding to the iron site of P. gouldii metHr at pH 7.2. The rate of azide binding decreases by approximately 85-fold in the presence of 0.33 M O-phosphorylethanolamine. However, neither O-phosphorylethanolamine nor 2-aminoethylphosphonate at 0.33 M was found to have any significant effect on O2 affinity of P. gouldii deoxyHr. Alternative functions for the two metabolites are suggested.  相似文献   

3.
L L Pearce  R E Utecht  D M Kurtz 《Biochemistry》1987,26(26):8709-8717
We have examined the effects on redox kinetics of changing the reduction potential of the mu-oxo-bridged binuclear iron center in octameric hemerythrin (Hr) from Phascolopsis gouldii. The opportunity to examine such effects is provided by the availability of mu-sulfidomethemerythrin (mu-S2-metHr), whose [Fe(III),Fe(III)]met----[Fe(II),Fe(III)]semi-met reduction potential is approximately 200 mV higher than that of methemerythrin (metHr). We have used, as redox partners to Hr, a set of metal complexes and the heme proteins deoxymyoglobin (Mb) and cytochrome b5. The latter protein from P. gouldii is a presumed physiological redox partner of Hr. Similar kinetics at pH 8 in the presence or absence of the allosteric effector perchlorate suggest reduction of the iron atom closer to the outer surface of each subunit in the Hr octamer during the met----semi-met transformation. For all reducing agents, the experimentally determined ratio of second-order rate constants for reductions of mu-S2-metHr and metHr, k12(mu-S2-met)/k12(met), is close to the value of 40 predicted by the simple Marcus relation for "outer-sphere" electron transfer. For oxidations of (semi-met)RHr and mu-S2-semi-metHr, the predicted value of 40 for k12[(semi-met)R]/k12(mu-S2-semi-met) is closely approximated when Fe(CN)6(3-) is used as oxidant. The ionic strength dependence of the second-order rate constant suggests electrostatic interactions of opposite charges during reduction of metHr by P. gouldii cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The purified cytochrome aa3-type oxidase from Sulfolobus acidocaldarius (DSM 639) consists of a single subunit, containing one low-spin and one high-spin A-type hemes and copper [Anemüller, S. and Sch?fer, G. (1990) Eur. J. Biochem. 191, 297-305]. The enzyme metal centers were investigated by electron paramagnetic resonance spectroscopy (EPR), coupled to redox potentiometry. The low-spin heme EPR signal has the following g-values: gz = 3.02, gy = 2.23 and gx = 1.45 and the high-spin heme exhibits an almost axial spectrum (gy = 6.03 and gx = 5.97, E/D < 0.002). In the enzyme as isolated the low-spin resonance corresponds to 95 +/- 10% of the enzyme concentration, while the high-spin signal accounts for only 40 +/- 5%. However, taking into account the redox potential dependence of the high-spin heme signal, this value also rises to 95 +/- 10%. The high-spin heme signal of the Sulfolobus enzyme shows spectral characteristics distinct from those of the Paracoccus denitrificans one: it shows a smaller rhombicity (gy = 6.1 and gx = 5.9, E/D = 0.004 for the P. denitrificans enzyme) and it is easier to saturate, having a half saturation power of 148 mW compared to 360 mW for the P. denitrificans protein, both at 10 K. The EPR spectrum of an extensively dialyzed and active enzyme sample containing only one copper atom/enzyme molecule does not display CuA-like resonances, indicating that this enzyme contains only a CUB-type center. The EPR-redox titration of the high-spin heme signal, which is assigned to cytochrome a3, gives a bell shaped curve, which was simulated by a non-interactive two step redox process, with reduction potentials of 200 +/- 10 mV and 370 +/- 10 mV at pH = 7.4. The decrease of the signal amplitude at high redox potentials is proposed to be due to oxidation of a CUB(I) center, which in the CUB(II) state is tightly spin-coupled to the heme a3 center. The reduction potential of the low-spin resonance was determined using the same model as 305 +/- 10 mV at pH = 7.4 by EPR redox titration. Addition of azide to the enzyme affects only the high-spin heme signal, consistent with the assignment of this resonance to heme a3. The results are discussed in the context of the redox center composition of quinol and cytochrome c oxidases.  相似文献   

5.
The radical intermediate of pyruvate:ferredoxin oxidoreductase (PFOR) from Moorella thermoacetica was characterized using electron paramagnetic resonance (EPR) spectroscopy at X-band and D-band microwave frequencies. EPR spectra, obtained with various combinations of isotopically labeled substrate (pyruvate) and coenzyme (thiamine pyrophosphate (TPP)), were analyzed by spectral simulations. Parameters obtained from the simulations were compared with those predicted from electronic structure calculations on various radical structures. The g-values and 14N/15N-hyperfine splittings obtained from the spectra are consistent with a planar, hydroxyethylidene-thiamine pyrophosphate (HE-TPP) pi-radical, in which spin is delocalized onto the thiazolium sulfur and nitrogen atoms. The 1H-hyperfine splittings from the methyl group of pyruvate and the 13C-hyperfine splittings from C2 of both pyruvate and TPP are consistent with a model in which the pyruvate-derived oxygen atom of the HE-TPP radical forms a hydrogen bond. The hyperfine splitting constants and g-values are not compatible with those predicted for a nonplanar, sigma/n-type cation radical.  相似文献   

6.
Tyr Z of photosystem II mediates electron transfer from the water splitting site, a Mn4Ca cluster, to the specialized chlorophyll assembly P680. Due to its proton-limited redox properties and the proximity to the Mn cluster, it is thought to play a critical role in the proton-coupled electron transfer reactions that constitute the four-step oxidation mechanism (so-called S-state transitions) of water to molecular oxygen. Spectroscopic evidence for the Tyr Z radical has been scarce in intact preparations (it is difficult to probe it optically, and too short-lived for EPR characterization) until recently. Advances in recent years have allowed the trapping at liquid helium temperatures and EPR characterization of metalloradical intermediates, attributed to tyrosyl Z* magnetically interacting with the Mn cluster. We have extended these studies and examined the evolution of the spectra of five intermediates: S0YZ*, S0YZ* (with 5% MeOH), S1YZ*, S2YZ*, and S2YZ* (with 5% MeOH) in the temperature range of 11-230 K. A rapid-scan EPR method has been applied at elevated temperatures. The tyrosyl radical decouples progressively from Mn, as the Mn relaxation rate increases with an increase in temperature. Above approximately 100 K, the spectra collapse to the unperturbed spectrum of Tyr Z*, which is found to be somewhat broader than that of the stable Tyr D* radical. This study provides a simple means for recording the spectrum of Tyr Z* and extends earlier observations that link the photochemistry at liquid helium temperatures to the photochemistry at temperatures that support S-state transitions.  相似文献   

7.
The interactions with sodium dodecyl sulfate (SDS) of methemerythrin, the anionic derivatives and oxyhemerythrin from Phascolopsis gouldii have been examined at 25 degrees C, I = 0.5 M and pH 6.3 and 7.8. Absorbance changes in the 350-500 nm range were used to monitor the rates. The denaturation is slow (k = 10(-2)-10(-3) s-1) and only slightly dependent on SDS concentration. Perchlorate is a very effective inhibitor of the SDS reaction with methemerythrin, and it is concluded that rapid binding of SDS near to the cysteine-50 site is an essential to unfolding. Myohemerythrin (from Themiste zostericola) and the monomeric N-ethylmaleimide derivatives of methemerythrin from P. gouldii and T. zostericola, in contrast, react rapidly with SDS. The products from denaturing of all proteins appear similar, having reduced alpha-helix content, very small absorbance in the 350-500 nm region and loss of anion or oxygen binding capacity. They do, however, retain the two irons, which can readily be removed with desferrioxamine B.  相似文献   

8.
9.
We report the purification and characterization of a soluble cytochrome b5 from coelomic erythrocytes of the sipunculan worm, Phascolopsis gouldii. We also report the isolation and purification of a membrane-bound NADH-cytochrome-b5 reductase from these erythrocytes. The non-heme iron protein, hemerythrin (Hr), is known to be the oxygen carrier in these erythrocytes. The aforementioned purified cytochrome b5 and reductase together catalyze the reduction of P. gouldii [Fe(III),Fe(III)]metHr to [Fe(II),Fe(II)deoxyHr by NADH. EPR spectroscopy demonstrates that a redox process involving formation of the intermediate [Fe(II),Fe(III)]semi-metHr occurs within intact sipunculan erythrocytes as well as in the system of purified components. The rhombic g-tensor of the EPR signal in both cases resembles that of (semi-met)RHr, the form obtained by one-electron reduction of metHr. These observations suggest that cytochrome b5 and NADH-cytochrome-b5 reductase in sipunculan erythrocytes function to counteract autoxidation of oxyHr. The sequence of electron flow in the system of purified components is: NADH----NADH-cytochrome-b5 reductase----cytochrome b5----metHr. At pH 7.5, the reduction of metHr in this system occurs in two phases, only the first of which is dependent on concentration of cytochrome b5. From an analysis of the kinetics and the EPR time-course, we propose that the two phases represent sequential reduction of met- to semi-metHr and reduction of semi-metHr to deoxyHr. This report represents the first demonstration of a physiological system for reduction of metHr.  相似文献   

10.
The two semi-met (FeIII, FeII) forms of hemerythrin prepared by either oxidation of the deoxy form or reduction of the met form, exhibit rather different EPR spectra. It is shown that a very weak difference in the rhombic distortion of the ferrous site is sufficient to account for this large shift of the g values. It is proposed that the important departure from g = 2.00 and the large anisotropy of the g tensor reflect directly the octahedral coordination of the ferrous ion. Such a coordination could then be present in other proteins which contain binuclear clusters characterized by similar EPR spectra.  相似文献   

11.
Rat livers and microsomes were subjected to electron paramagnetic resonance (EPR) measurements at 77 K. The EPR spectra of the livers from the control group, carbon tetrachloride-, 3-methylcholanthrene-, and 3,3',4,4',5-pentachlorobiphenyl (PCB126)-treated rats exhibited an EPR spectrum at g=2.40, 2.24, and 1.93, which is characteristic of P450 in a resting state. The liver of the PCB126-treated rats showed an additional distinct EPR spectrum at g=2.49, 2.26, and 1.87 (g=2.49-species). The heme environmental structure of g=2.49-species was identified by crystal field analysis using three EPR g-values of the microsome treated with various chemicals. These results indicated that g=2.49-species is a hemeprotein with cysteine thiolate at the 5th coordination site, and a nitrogenous ligand at the 6th site.  相似文献   

12.
Distinct semimetmyohemerythrin species are produced by one-electron oxidation of deoxymyohemerythrin and one-electron reduction of metmyohemerythrin. The former, (semimetmyo)o, changes (greater than or equal to 90%) to the latter, (semimetmyo)R, with k = 1.0 x 10(-2) s-1, delta H = 15.1 kcal mol-1 and delta S = -17 eu. Oxidation of (semimetmyo)o by Fe(CN)6(3)- rapidly produces an unstable metmyohemerythrin form which converts to the final metmyohemerythrin with k = 4.6 x 10(-3) s-1, delta H = 16.8 kcal mol-1, and delta S = -13 eu. The two met forms react at the same rate with N3-, but the unstable form reacts very rapidly with S2O4(2-) in contrast to stable metmyohemerythrin. (Semimetmyo)R or a mixture of metmyohemerythrin and deoxymyohemerythrin equilibrate very slowly to a mixture containing all three species. The rate constants for disproportionation and comproportionation are 0.89 M-1 s-1 and 9.4 M-1 s-1, respectively. EPR spectra near liquid He temperatures and optical absorption spectra have been used to characterize and measure the rates at 25 degrees C, pH 8.2, and I = 0.15 M. The comparative behavior of octameric and monomeric protein is discussed.  相似文献   

13.
The zinc coordination in 5-aminolevulinate dehydratase was investigated by extended X-ray absorption fine structure (EXAFS) associated with the zinc K-edge. The enzyme binds 8 mol of zinc/mol of octameric protein, but only four zinc ions seem sufficient for full activity. We have undertaken a study on four forms of the enzyme: (a) the eight-zinc native enzyme; (b) the enzyme with only the four zinc sites necessary for full activation occupied; (c) the enzyme with the vacant sites of (b) occupied by four lead ions; (d) the product complex between (b) and porphobilinogen. We have shown that two structurally distinct types of zinc sites are available in the enzyme. The site necessary for activity has an average zinc environment best described by two/three histidines and one/zero oxygen from a group such as tyrosine or a solvent molecule at 2.06 +/- 0.02 A, one tyrosine or aspartate at 1.91 +/- 0.03 A, and one cysteine sulfur at 2.32 +/- 0.03 A with a total coordination of five ligands. The unoccupied site in (b), obtained by taking the difference spectrum between the spectra from samples (a) and (b), is dominated by a single contribution of four cysteinyl sulfur atoms at 2.28 +/- 0.02 A. Spectra from samples (c) and (d) show only small changes from that of (b), reflecting a slight rearrangement of the ligands around the zinc atom.  相似文献   

14.
Electron paramagnetic resonance spectra of azidosemimethemerythrin (from Phascolopsis gouldii) have been integrated to find the total number of spins per monomer unit. The value observed, 1.0 +/- 0.1 spins per Fe2 pair, confirms the assignment of a hybrid oxidation state, FeIIFeIII, to each site.  相似文献   

15.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.  相似文献   

16.
EPR spectra of intestinal peroxidase are reported for the first time. The resting state of intestinal peroxidase exhibits only a high spin EPR spectrum with pH-dependent rhombicity. Addition of chloride shifts the equilibrium between an acidic and a neutral form of the enzyme. In contrast, resting lactoperoxidase shows EPR spectra of both low spin and high spin species, indicating a different heme environment between these two peroxidases. The high spin signal of lactoperoxidase consists of multiple components; the major component exhibits pH-dependent rhombicity similar to intestinal peroxidase and the equilibrium between the acidic and the neutral forms is also shifted by chloride ion. EPR features of the low spin cyanide complex of intestinal peroxidase and lactoperoxidase are compared with those of other hemeproteins, whose proximal axial ligands are known to be histidine residues. The g-values of the cyanide adducts of the mammalian peroxidases are similar. The relationship between the g-value anisotropy and imidazolate character of the proximal histidine is discussed.  相似文献   

17.
Highly purified iron superoxide dismutase was obtained from Escherichia coli B using a modification of the procedure of Yost and Jridovich (Yost, F. J., Jr., and Fridovich, I. (1973) J. Biol. Chem. 248, 4905-4908). The protein contained 1.8 +/- 0.2 atoms of iron per 38,700 g of protein. We have found that cyanide does not bind to the Fe3+ ion of iron dismutase but fluoride and azide have moderately large binding constants. Optical and electron paramagnetic resonance (EPR) measurements suggested that 2 fluoride ions could associate with each iron atom with the first having an association constant of approximately 520 M-1 and the second with an estimated value of 24 M-1. Activity measurements yielded an inhibition constant for fluoride of 30 M-1. At room temperature only one azide binds to the Fe3+ (K = 760 M-1) and this does not interfere with superoxide dismutase activity. Upon freezing solutions of iron superoxide dismutase in the presence of excess azide their color changes from yellow to pink. Combined EPR and optical titrations with azide suggest the presence of two binding sites on Fe3+ with only the first being occupied at room temperature and the second binding azide only upon freezing the solution. The results suggest that each Fe3+ ion of this superoxide dismutase has two coordination positions available for interaction with solute molecules but only one is necessary for catalysis of the superoxide dismutation reaction. The EPR, optical, and circular dichroism spectra of the native protein and the various fluoride and azide complexes are presented.  相似文献   

18.
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in bovine heart cytochrome c oxidase (COX) and nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the existence of Cu-Cu interaction in both enzymes. C-band (4.5 GHz) proves to be a particularly good frequency complementing the spectra of COX and N2OR recorded at 2.4 and 3.5 GHz. Both the high and low field region of the EPR spectra show the presence of a well-resolved 7-line pattern consistent with the idea of a binuclear Cu center in COX and N2OR. Based on this assumption consistent g-values are calculated for gz and gx at four frequencies. No consistent g-values are obtained with the assumption of a 4-line pattern indicative for a mononuclear Cu site.  相似文献   

19.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

20.
The electron-spin relaxation rates of the two species of cytochrome a3(3+)-azide found in the azide compound of bovine-heart cytochrome oxidase were measured by progressive microwave saturation at T = 10 K. It has been shown previously that Cyt a3(3+)-azide gives rise to two distinct EPR resonances, depending upon the oxidation state of Cyt a. When Cyt a is ferrous, Cyt a3(3+)-azide has g = 2.88, 2.19 and 1.64; upon oxidation of Cyt a, the a3(3+)-azide g-values become g = 2.77, 2.18, and 1.74 (Goodman, G. (1984) J Biol. Chem. 259, 15094-15099). The relaxation effect of Cyt a on Cyt a3 could be measured as the difference in microwave field saturation parameter H1/2 between the g = 2.77 and g = 2.88 species. For each signal the spin-lattice relaxation time T1 was determined from H1/2 using the transverse relaxation time T2. The value of T2 at 10 K was extrapolated from a plot of line-width vs. temperature at higher temperature. The dipolar contribution to T1 was related to the Cyt a-Cyt a3 spin-spin distance utilizing available information on the relative orientation of Cyt a3-azide and Cyt a (Erecińska, M., Wilson, D.F. and Blasie, J.K. (1979) Biochim. Biophys. Acta 545, 352-364). By taking into account the relaxation parameters for both gx and gz components of the Cyt a3-azide g-tensor, the angle between the gz components of the Cyt a and Cyt a3 g-tensors was determined to be between 0 and 18 degrees, and the Cyt a-Cyt a3 spin-spin distance was found to be 19 +/- 8 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号