首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinuclidinyl Benzilate Binding in House Fly Heads and Rat Brain   总被引:4,自引:3,他引:1  
Abstract: House fly heads contain a binding site for 3-quinuclidinyl benzilate (QNB) that is quite similar in pharmacology to the muscarinic acetylcholine receptor of vertebrate tissues. The house fly site binds [3H]QNB reversibly with a K d of 260 PM and Bmax of 1 pmol/g of heads from direct binding measurements. The Kd calculated from the ratio of the dissociation rate constant (2 × 10−4 sec−1) to the association rate constant (2.5 × 106 M−1 Sec−1) was 80 pM. The house fly site binds (-)quinuclidinyl benzilate preferentially, as do classic muscarinic receptors. The binding is also sensitive to other muscarinic antagonists and agonists. Nicotinic and other drugs are no more effective on the house fly site than they are on the rat brain muscarinic receptor itself. These binding studies suggest that the house fly QNB binding site is a muscarinic receptor.  相似文献   

2.
Abstract: In membranes of rat olfactory bulb, a brain region in which muscarinic agonists increase cyclic AMP formation, the muscarinic stimulation of guanosine 5'- O -(3-[35S]thiotriphosphate) ([35S]GTPγS) binding was used as a tool to investigate the receptor interaction with the guanine nucleotide-binding regulatory proteins (G proteins). The stimulation of the radioligand binding by carbachol (CCh) was optimal (threefold increase) in the presence of micromolar concentrations of GDP and 100 m M NaCl. Exposure to N -ethylmaleimide and pertussis toxin markedly inhibited the CCh effect, whereas it increased the relative stimulation of [35S]GTPγS binding elicited by pituitary adenylate cyclase-activating polypeptide (PACAP). On the other hand, membrane treatment with cholera toxin curtailed the PACAP stimulation of [35S]GTPγS binding but did not affect the response to CCh. Like CCh, a number of cholinergic agonists stimulated [35S]GTPγS binding in a concentration-dependent and saturable manner. The antagonist profile of the muscarinic stimulation of [35S]GTPγS binding was highly correlated with that displayed by the muscarinic stimulation of adenylyl cyclase. These data indicate that the olfactory bulb muscarinic receptors couple to Gi/Go, but not to Gs, and support the possibility that activation of Gi/Go mediates the stimulatory effect on adenylyl cyclase activity.  相似文献   

3.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

4.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

5.
Abstract— Cultured pineal glands incorporated 32P into membrane phospholipids. Treatment of cultured glands with norepinephrine, which is known to stimulate membrane- bound pineal adenyl cyclase and to increase the production and secretion of melatonin, stimulated the incorporation of 32P into a phospholipid fraction of membranes and particulates containing phosphatidyl serine and phosphatidyl inositol. The labelling of other phospholipid fractions and the total 32P in the gland were not changed by norepinephrine treatment. Experiments with chronically-denervated pineal glands indicated that the effect of norepinephrine on the [32P]labelling of phospholipids occurred at a postsynaptic site. When norepinephrine-stimulated secretion of melatonin was partially inhibited by p -chlorophenylalanine (a compound which blocks the synthesis of melatonin precursors), the norepinephrine-stimulated labelling of phospholipids was still observed. Conversely, when melatonin secretion was stimulated in the absence of norepinephrine by treatment with the immediate precursor of melatonin, N -acetylserotonin, a stimulation of 32P- labelling of phospholipids did not occur. These observations suggest that the increased [32P]- labelling of a phospholipid fraction caused by the norepinephrine treatment is not related to the secretion of melatonin. This effect on phospholipids may be associated with the interaction of norepinephrine with a membrane-bound postsynaptic receptor. Stimulation by norepinephrine of [32P]-incorporation into phospholipids has not been previously reported to occur in a tissue in which cholinergic fibres are absent.  相似文献   

6.
Abstract: The pharmacological properties of acetylarsenocholine, an arsenic analogue of acetylcholine, were investigated. Acetylarsenocholine behaved as a cholinergic ligand both in the central and peripheral nervous system. It bound to nicotinic receptors in rat medulla-pons with a K D of 15 μ M and to muscarinic receptors in rat cerebral cortex with a K D of 10 μ M . It behaved also as an agonist at presynaptic muscarinic receptors in guinea pig ileum myenteric plexus preparation. Arsenocholine is an alternative substrate for choline acetyltransferase and acetylarsenocholine is an alternative substrate for acetylcholinesterase.  相似文献   

7.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

8.
Abstract: cis -Methyldioxolane (CD) is a muscarinic receptor agonist. [3H] CD has been used to label a subpopulation of muscarinic receptors described as exhibiting high agonist affinity. Pharmacological evidence suggests that the population of receptors labeled by [3H] CD consists of m2 and/or m4 subtypes; however, no studies have directly addressed the subtype selectivity of [3H] CD. The present study characterizes binding of this ligand to individual human receptor subtypes expressed in transfected Chinese hamster ovary cells. Results indicate that [3H] CD binds with high affinity only to Hm2 receptors but not to all Hm2 receptors. Twenty-eight percent of Hm2 receptors bound [3H] CD with a K D of 3.5 ± 0.5 nM. Binding was eliminated in the presence of guanosine 5'- O -(3-thiotriphosphate), indicating that the Hm2 receptors labeled by [3H] CD are those that are associated with GDP-bound G protein. Binding of [3H] CD by only a subpopulation of Hm2 receptors is in agreement with data generated from studies of [3H] CD binding in mammalian brain. Because muscarinic receptors have been implicated to play a role in the pathogenesis of both Alzheimer's and Parkinson's disease, as well as the neurotoxicity of organophosphorus compounds, knowledge of the binding specificity of the muscarinic agonist [3H] CD should aid research in these areas.  相似文献   

9.
Abstract: In the present work we show the development of carbachol-induced accumulation of 3H-inositol phosphates (3H-InsPs) in the chick embryonic retina and its regulation by glutamate receptors. Although basal levels of 3H-InsPs increased during development, the retinal response to carbachol was high in the early developing stages and decreased after synaptogenesis in the retina. Eserine also stimulated the turnover of phosphoinositides in the embryonic but not in the mature retina. The effect of eserine could be blocked by atropine, suggesting that acetylcholine could be released from developing retina cells and further stimulate the turnover of InsPs in the embryonic tissue. Our data also show that muscarinic stimulation of turnover of 3H-InsPs could be blocked by stimulation of glutamatergic ionotropic receptors. Moreover, the effect of glutamate agonists did not seem to be mediated by the release of other neurotransmitters such as GABA, glycine, adenosine, or dopamine from the tissue because these neurotransmitters did not interfere with the retinal response to carbachol. These results suggest that muscarinic activation of phosphoinositide turnover occurs mainly in the embryonic retina and that activation of glutamate receptors can inhibit directly the muscarinic stimulation of hydrolysis of 3H-InsPs in this tissue.  相似文献   

10.
Abstract: We have characterized the internalization of muscarinic acetylcholine receptors induced by the nitric oxide (NO)-generating compound sodium nitroprusside. When Chinese hamster ovary cells, stably transfected with the human m4 muscarinic receptor subtype, were incubated for 1 h in the presence of 700 µ M sodium nitroprusside, the number of receptors measured in intact cells with the hydrophilic ligand N -[3H]methylscopolamine was reduced by 30%. The effect was dose dependent, beginning with a concentration of sodium nitroprusside as low as 45 µ M . Removal of sodium nitroprusside from the incubation medium did not result in a recovery of the binding sites. The phenomenon was temperature dependent and was blocked by the muscarinic antagonist atropine. No receptor diminution was detected when the number of binding sites was evaluated with the lipophilic antagonist [3H]quinuclidinyl benzilate. This indicates that sodium nitroprusside induces a redistribution of the muscarinic receptors between the plasma membrane and an internal compartment of the cell. Receptor loss was readily reversed by treatment with the sulfhydryl reducing agent diethyldithiocarbamate. Our data provide evidence that muscarinic receptors are internalized by sodium nitroprusside through the oxidation of sulfhydryl groups; they also suggest that NO could play a role in muscarinic receptor desensitization.  相似文献   

11.
Abstract: Chromaffin cells have H1 histamine receptors. Histamine, acting at these receptors, increases the metabolism of inositol-containing phospholipids and stimulates catecholamine secretion from Chromaffin cells. We have investigated the effects of histamine and other agents on the accumulation of inositol monophosphate (InsP1) and catecholamine secretion in purified cultures of norepinephrine-containing and epinephrine-containing bovine Chromaffin cells. Histamine-stimulated InsP, accumulation in epinephrine cells was three times greater than that in norepinephrine cells. In contrast, bradykinin caused roughly equivalent increases in InsP1 accumulation in the two Chromaffin cell subtypes. Histamine-stimulated catecholamine secretion was also greater in epinephrine cells than in norepinephrine cells, whereas high K+, bradykinin, phorbol 12, 13-dibutyrate, and angiotensin II all caused greater secretion from norepinephrine cells than from epinephrine cells. The density of H1 receptors in epinephrine cells was approximately three times greater than that in norepinephrine cells. The greater density of H1 receptors on epinephrine cells may account for the greater effects of histamine on InsP1 accumulation and catecholamine secretion in these cells.  相似文献   

12.
Abstract: The addition of either carbachol or muscarinic agonists to cultured bovine adrenal chromaffin cells results in a selective stimulation of phosphatidate (PhA) and phosphatidylinositol (PhI) labeling from 32Pi and [3H]glycerol that can be inhibited by the inclusion of atropine, but not d -tubocurarine. In contrast, increased catecholamine secretion is observed on the addition of carbachol or nicotinic agonists and is inhibited by d -tubocurarine but not by atropine. Added calcium is essential for catecholamine secretion but not for stimulated phospholipid labeling. Chelation of endogenous Ca2+ with EGTA does, however, inhibit the stimulated phospholipid labeling. These results suggest that stimulated phospholipid labeling in the bovine chromaffin cell and catecholamine secretion are separate and distinct processes.  相似文献   

13.
Abstract: In the olfactory bulb, muscarinic receptors exert a bimodal control on cyclic AMP, enhancing basal and Gs-stimulated adenylyl cyclase activities and inhibiting the Ca2+/calmodulin- and forskolin-stimulated enzyme activities. In the present study, we investigated the involvement of G protein βγ subunits by examining whether the muscarinic responses were reproduced by the addition of βγ subunits of transducin (βγt) and blocked by putative βγ scavengers. Membrane incubation with βγt caused a stimulation of basal adenylyl cyclase activity that was not additive with that produced by carbachol. Like carbachol, βγt potentiated the enzyme stimulations elicited by vasoactive intestinal peptide and corticotropin-releasing hormone. RT-PCR analysis revealed the expression of mRNAs encoding both type II and type IV adenylyl cyclase, two isoforms stimulated by βγ synergistically with activated Gs. In addition, βγt inhibited the Ca2+/calmodulin- and forskolin-stimulated enzyme activities, and this effect was not additive with that elicited by carbachol. Membrane incubation with either one of two βγ scavengers, the GDP-bound form of the α subunit of transducin and the QEHA fragment of type II adenylyl cyclase, reduced both the stimulatory and inhibitory effects of carbachol. These data provide evidence that in rat olfactory bulb the dual regulation of cyclic AMP by muscarinic receptors is mediated by βγ subunits likely acting on distinct isoforms of adenylyl cyclase.  相似文献   

14.
Abstract: Single electroconvulsive shock (ECS) induced no change in [3H]quinuclidinyl benzilate ([3H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy.  相似文献   

15.
Abstract: We have found earlier that the neuromuscular blocker alcuronium binds to cardiac muscarinic receptors simultaneously with their specific antagonist [3H]methyl- N -scopolamine ([3H]NMS) and allosterically increases their affinity to this ligand. Nothing is known about the allosteric site with which alcuronium interacts. To gain an insight, we have now investigated how the binding of [3H]NMS is affected by agents known to modify specific residues in proteins and how their effects are altered by alcuronium. Reagents that covalently modify the tyrosyl residues ( p -nitrobenzenesulfonyl fluoride and 4-chloro-7-nitrobenzofurazan) and the carboxyl groups of aspartate and glutamate [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N' -dicyclohexylcarbodiimide, and N -ethyl-5-phenylisoxazolium-3'-sulfonate] blocked the binding of [3H]NMS to receptors in rat heart atria. Their action was probably due to the modification of tyrosyl and aspartyl residues directly in the muscarinic binding sites because it was antagonized by atropine and carbamoylcholine. Alcuronium and gallamine, another allosteric ligand, also protected the [3H]NMS binding sites against the inactivation by tyrosine- and carboxyl-directed chemical modifiers just as well as by benzilylcholine mustard, known to attach covalently to the muscarinic binding sites. Protection by alcuronium has also been observed on cerebrocortical muscarinic receptors. The effect of alcuronium indicates that the drug interferes with the access of chemical modifiers to the muscarinic sites. In view of the unspecific nature of most of the modifiers used (with regard to muscarinic mechanisms), the protection by alcuronium appears to be best explained on the assumption that the drug binds in close vicinity of the "classical" muscarinic site and sterically blocks the access to this site.  相似文献   

16.
Abstract: Previous studies have shown that PC12 cells depend on growth factors for their survival. When deprived of growth factors, the cells undergo a dying process termed "apoptosis" (programed cell death). We show here that muscarinic agonists inhibited the apoptotic death of growth factor-deprived PC12M1 cells (PC12 cells stably expressing cloned m1 muscarinic acetylcholine receptors). This protective effect of the muscarinic agonists was observed in both proliferating and neuronal PC12M1 cells, was blocked by the muscarinic antagonist atropine, and was not observed in PC12 cells lacking m1 receptors. Muscarinic receptors therefore mediate inhibition of apoptosis in these cells. In addition to its effect on survival, the muscarinic agonist oxotremorine induced inhibition of DNA synthesis as well as growth arrest of exponentially growing PC12M1 cells at the S and G2/M phases of the cell cycle. Muscarinic receptors in these cells may therefore mediate inhibition of cell cycle progression.  相似文献   

17.
Abstract: Acetylcholine and other muscarinic agonists stimulate the proliferation of rat cortical astrocytes and 132 1N1 human astrocytoma cells by activating muscarinic m3 cholinergic receptors. Ethanol was a potent inhibitor of carbachol-stimulated proliferation, measured by [3H]thymidine incorporation, with an IC50 of 10 m M . On the other hand, basal and serum-stimulated proliferation of astrocytes and astrocytoma cells was inhibited by ethanol with lower potency (IC50 = 200–250 m M ). Concentration-response experiments with carbachol, in the presence of 10 m M ethanol, suggested that inhibition of proliferation by the alcohol was of the noncompetitive type. Experiments with acetaldehyde and with the alcohol dehydrogenase inhibitor 4-methylpyrazole suggested that the inhibitory effect of alcohol was due to ethanol itself and not to its metabolite acetaldehyde. Proliferation of astrocytoma cells induced by carbachol and the inhibitory effects of ethanol were also confirmed by flow cytometry using the 5-bromodeoxyuridine-Hoechst 33258 method. Ethanol (10 m M ) had no effect on proliferation induced by 50 µg/ml insulin and 100 ng/ml platelet-derived growth factor BB; on the other hand, the mitogenic effect of 1 m M histamine, 100 U/ml interleukin-1, and 100 ng/ml 12- O -tetradecanoylphorbol 13-acetate were inhibited by ∼50%. These results indicate that proliferation of glial cells induced by muscarinic agonists is especially sensitive to the inhibitory effect of ethanol. This action of ethanol may be relevant to its developmental neurotoxicity, particularly microencephaly, which is one of the common features of the fetal alcohol syndrome.  相似文献   

18.
Abstract: It is generally believed that the neuronal form of nitric oxide synthase (nNOS) is constitutively expressed and that regulation of this enzyme's activity is mediated solely by changes in cytosolic calcium concentration. Serendipitously, however, we observed that pretreatment of Chinese hamster ovary (CHO) cells, which coexpress muscarinic M1 receptors and nNOS, with 3.3 µ M or 1 m M carbachol (CCh) for 48 h resulted in marked enhancement of maximal muscarinic receptor-stimulated nNOS activity as determined by l -[3H]citrulline and cyclic [3H]GMP production. This was accompanied by a decrease in the potency of CCh. Muscarinic receptor density was reduced in the agonist-pretreated cells, as determined by specific [ N-methyl -3H]scopolamine methyl chloride binding, whereas competition binding studies revealed no changes in agonist affinity. Both receptor-stimulated inositol phosphate formation and elevation of intracellular calcium concentrations were found to be desensitized in agonist-pretreated cells in a manner dependent on CCh pretreatment concentration. It is interesting that ionomycin-stimulated nNOS activity was greater in CCh-pretreated cells. Also, western analysis revealed increased nNOS immunoreactivity in pretreated cells. A similar increase in nNOS immunoreactivity following agonist treatment was demonstrated in N1E-115 neuroblastoma cells, which endogenously express nNOS and muscarinic M1 receptors. Thus, the enhancement of maximal receptor-stimulated nNOS activity following agonist pretreatment can be attributed to up-regulation of nNOS. It is interesting that this augmentation of the response takes place in spite of receptor down-regulation and desensitization of multiple steps involved in nNOS activation.  相似文献   

19.
Abstract: Full and functionally selective M1 muscarinic agonists (carbachol and AF102B, respectively) activate secretion of the soluble form of amyloid precursor protein (APPs) in PC12 cells expressing the m1 muscarinic receptor (PC12M1 cells). This activation is further augmented by neurotrophins such as nerve growth factor and basic fibroblast growth factor. Muscarinic stimulation activates two transduction pathways that lead to APPs secretion: protein kinase C (PKC)-dependent and mitogen-activated protein kinase (MAPK)-dependent pathways. These pathways operate in parallel and converge with transduction pathways of neurotrophins, resulting in enhancement of APPs secretion when both muscarinic agonist and neurotrophins stimulate PC12M1 cells. These conclusions are supported by the following findings: (a) Only partial blockade of APPs secretion is observed when PKC, p21ras, or MAPK is fully inhibited by their respective specific inhibitors, GF109203X, S-trans,trans -farnesylthiosalicylic acid, and PD98059. (b) K252a, which blocks PKC and phorbol 12-myristate 13-acetate-induced APPs secretion, enhances both muscarinic-stimulated MAPK activation and APPs secretion. (c) Activation of MAPK in PC12M1 cells by muscarinic agonists is Ras-dependent but PKC-independent and is enhanced synergistically by neurotrophins. These results suggest that muscarinic stimulation of APPs secretion is mediated by at least two independent pathways that converge and enhance the signal for APPs secretion at the convergence point.  相似文献   

20.
Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic M1 and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10−8–10−5 M) with a maximum stimulation at 10−7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to M1 receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号