首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aromatase inhibitors and hormone-dependent cancers   总被引:1,自引:0,他引:1  
Aromatase (estrogen synthetase) occurs in a variety of tissues. Using immunocytochemistry, we have recently located this enzyme in cellular compartments of several types of human tissue. Furthermore, we found the mRNA was located in the same structures where tested. As both gonadal and peripherally formed estrogen contribute to growth of hormone sensitive cancers, we have developed aromatase inhibitors to block synthesis of this hormone. We have determined that 4-hydroxyandrostenedione (4-OHA) selectively inhibits aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. 4-OHA was also found to inhibit gonadotropin levels and reduce estrogen and progesterone receptor levels in treated animals. The mechanism of these effects appear to be associated with the weak androgenic activity of the compound. These effects together with aromatase inhibition may result in a synergistic response reducing estrogen production and action. In postmenopausal women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either daily oral or parenteral weekly treatment with 4-OHA at doses that did not affect their gonadotropin levels, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. These results indicate that 4-OHA is of benefit in postmenopausal patients with advanced disease who have relapsed from prior hormonal therapies, and that steroidal inhibitors may be of value in premenopausal patients.  相似文献   

2.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

3.
Estrogens have an important role in the growth of breast and other hormone-sensitive cancers. We have shown that 4-hydroxyandrostenedione (4-OHA) selectively blocks estrogen synthesis by inhibiting aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. In postmenopausal men and women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either by daily oral or parenteral weekly treatment with 4-OHA, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. We recently studied the effects of 4-OHA and other aromatase inhibitors, 10-propargylestr-4-ene-3,17-dione (PED) and imidazo[1,5-]3,4,5,6-tetrahydropyrin-6-yl-(4-benzonitrile) (CGS 16949A) as well as 5-reductase inhibitors, N,N-diethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxyamide (4-MA) and 17β-hydroxy-4-aza-4-methyl-19norandrost-5-en-3-one (L651190) in prostatic tissue from 11 patients with prostatic cancer and six patients with benign prostatic hypertrophy (BPH), and from normal men at autopsy. We attempted to measure aromatase activity in tissue incubation by quantitating 3H2O released during aromatization of androstenedione or testosterone labeled at the C-1 position. The amount of 3H2O released from all samples was at least twice that of the heat inactivated tissue samples. The 3H2O release was significantly inhibited by 4-OHA and 4-MA, but not by the other aromatase inhibitors. However, when HPLC and TLC were used to isolate steroid products, no estrone or estradiol was detected in the incubates. Furthermore, no aromatase mRNA was detected following amplification by PCR. The 4-OHA was found to inhibit 5-reductase in both BPH and cancer tissue, although to a lesser extent than 4-MA. The other aromatase inhibitors were without effect. Although a mechanism involving intraprostatic aromatase is not likely, inhibitors may act to reduce peripherally-formed estrogens. In postmenopausal breast cancer, the results indicate that 4-OHA is of significant benefit.  相似文献   

4.
4-Hydroxy-4-androstene-3,17-dione (4-OHA) and 4-acetoxy-4-androstene-3,17-dione (4-AcA), in addition to being competitive inhibitors of aromatase, cause time-dependent, irreversible, loss of enzyme activity in both human placental and rat ovarian microsomes. In vivo, treatment of rats with 4-OHA also causes loss of ovarian aromatase activity. To test whether this loss of activity could have in vivo significance, rats with hormone-dependent, mammary tumors were treated with 4-OHA on alternate weeks. Tumor regression continued to occur during the weeks without treatment. These findings suggest that inactivation of aromatase is important in the mechanism of action of the compounds in vivo.  相似文献   

5.
Application of aromatase inhibitors to the treatment of conditions in which estrogen plays, a role is discussed. Studies in vitro demonstrate that 4-hydroxyandrostenedione (4-OHA) is a potent inhibitor of aromatase. The compound reduces ovariant estrogen production and causes regression of carcinogen (DMBA)-induced mammary tumors in the rat. In the rhesus monkey, 4-OHA was also shown to inhibit peripheral aromatization. To date 58 postmenopausal breast cancer patients with advanced metastatic disease have received 500 mg im weekly while 31 patients received 250 mg 4-OHA orally per day. Estradiol levels were significantly reduced in all patients from a mean of 7.2 + 0.8 pg/ml to 2.8 + 0.3 pg/ml. Of patients receiving 4-OHA im 27% had partial or complete responses and in 10% of patients the disease was stabilized. Similar responses occurred in the patients receiving 4-OHA orally. These results suggest that 4-OHA is effective and that this compound and other aromatase inhibitors could be valuable new additions to the treatment of breast cancer.  相似文献   

6.
Selective inhibition of estrogen production with aromatase inhibitors has been found to be an effective strategy for breast cancer treatment. Most studies have focused on inhibitor screening and in vitro kinetic analysis of aromatase inhibition using placental microsomes. In order to determine the effects of different inhibitors on aromatase in the whole cell, we have utilized the human choriocarcinoma cell line, JEG-3 in culture to compare and study three classes of aromatase inhibitors, 4-hydroxyandrostenedione, fadrozole (CGS 16949A), and aminoglutethimide. Fadrozole is the most potent competitive inhibitor and aminoglutethimide is the least potent among the three. However, stimulation of aromatase activity was found to occur when JEG-3 cells were preincubated with aminoglutethimide. In contrast, 4-OHA and fadrozole caused sustained inhibition of aromatase activity in both JEG-3 cells and placental microsomes, which was not reversed even after the removal of the inhibitors. 4-OHA bound irreversibly to the active site of aromatase and caused inactivation of the enzyme which followed pseudo-first order kinetics. However, 4-OHA appears to be metabolized rapidly in JEG-3 cells. Sustained inhibition of aromatase induced by fadrozole occurs by a different mechanism. Although fadrozole bound tightly to aromatase at a site distinct from the steroid binding site, the inhibition of aromatase activity by fadrozole does not involve a reactive process. None of the inhibitors stimulated aromatase mRNA synthesis in JEG-3 cells during 8 h treatment. The stimulation of aromatase activity by AG appeared to be due to stabilization of aromatase protein. According to these results, 4-OHA and fadrozole would be expected to be more beneficial in the treatment of breast cancer patients than AG. The increase in aromatase activity by AG may counteract its therapeutic effect and might be partially responsible for relapse of breast cancer patients from this treatment.  相似文献   

7.
A number of inhibitors of estrogen synthesis are now becoming available which could be of value in the treatment of breast cancer. 4-Hydroxyandrostenedione (4-OHA), the first of these compounds to enter the clinic has been found to be effective in postmenopausal patients who have relapsed from tamoxifen. Thus, in studies of 240 patients, 26% patients experienced partial or complete response to treatment. An additional 25% patients had disease stabilization. 4-OHA is a potent selective, steroidal inhibitor which causes inactivation of aromatase in vitro. It is effective in reducing concentrations of ovarian estrogens in rats and of ovarian and peripheral estrogens in non-human primate species. The compound has been shown to lower serum estrogen levels in postmenopausal breast cancer patients. However, not all of these patients experienced disease remission, suggesting that their tumors were hormone insensitive rather than that the dose of 4-OHA was suboptimal. In trials of patients who had not received prior tamoxifen treatment, 4-OHA (250 mg i.m. every 2 weeks) was found to induce complete or partial tumor regression in 33% of patients. The response of patients was not significantly different from that observed in patients treated with tamoxifen (30 mg o.d) of 37%. No significant difference between treatments was observed for disease stabilization, the duration of response or median survival. Several other steroidal aromatase inhibitors have been studied, such as 7-substituted androstenedione derivatives. MDL 18962 [10-(2-propynyl)estr-4-ene-3,17-dione] and FCE 24304 (6-methylen-androsta-1,4-diene-3,17-dione) are currently in clinical trials. Non-steroidal inhibitors of cytochrome P-450 enzymes, such as imidazole and triazole derivatives have been developed which are highly selective for aromatase. Three triazoles which are very potent and selective inhibitors are vorazole (6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)-methyl]1-methyl-1H-benzotriazole R 76713, arimidex 2,2′[5-( -1,2,4-triazol-1-yl methyl)-1,3-phenylene]bis(2-methylpropiononitrile) (ZD1033) and letrozole 4-[1-(cyanophenyl)-1-(1,2,4-triazolyl)methyl]benzonitril (CGS 20267). These compounds reduce serum estradiol concentration to undetectable levels in breast cancer patients. These highly potent inhibitors provide the opportunity to determine whether a further degree of estrogen suppression will be important in producing greater clinical response. With the recent approval of 4-OHA in several countries and the introduction of the potent new compounds, aromatase inhibitors either alone or in combination with the antiestrogen are likely to improve the treatment of breast cancer.  相似文献   

8.
Human placental aromatase inhibitory properties of FCE 24304, MDL 18962, SH 489 and 4-hydroxyandrostenedione (4-OHA) were compared. The compounds caused time-dependent enzyme inactivation with t1/2 values of 13.9, 13.1, 45.3 and 2.1 min and Ki values of 26.0, 0.7, 2.0 and 29.0 nM respectively. The antitumor activity of FCE 24304, MDL 18962 and SH 489 was studied on the DMBA-induced mammary tumor in rats, at daily s.c. doses of 10 and 50 mg/kg. FCE 24304 induced 30 and 73% regressions of established tumors, associated with 86 and 93% decrease in total ovarian aromatase activity. SH 489 and MDL 18962 did not affect tumor growth. FCE 24304, like 4-OHA, was shown to inhibit LH hypersection in castrated rats. A gonadotropin suppressive effect could contribute to the antitumor activity of aromatase inhibitors in intact DMBA-induced tumor bearing rats.  相似文献   

9.
The aim of the present study was to investigate the effectiveness of several imidazole drugs to inhibit human placental aromatase compared with the known inhibitors of aromatase, 4-hydroxyandrostenedione (4-OHA) and aminoglutethimide (AG). Inhibition was similar with both androstenedione and testosterone as substrates. The order of decreasing inhibitory effect (determined from ID50 values) was: 4-OHA greater than tioconazole greater than econazole greater than bifonazole greater than clotrimazole greater than micomazole greater than isoconazole greater than ketoconazole greater than AG greater than nimorazole. The imidazole drugs and AG were reversible inhibitors of aromatase activity, in contrast 4-OHA was an irreversible inhibitor. Astemizole inhibited less than 40% whereas metronidazole, carbimazole, mebendazole, tinidazole and thiabendazole inhibited less than 20% of aromatase activity at 100 mumol/l. The imidazole drugs and AG were without effect on 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid oxidoreductase activity. In contrast 4-OHA was found to be a potent, reversible inhibitor of 3 beta-HSD-I with an ID50 value of 2.15 mumol/l. A common structural feature of the imidazole drugs having an inhibitory effect was the presence of one or more aromatic rings on the N-1 substituent. In contrast, the imidazole drugs having the imidazole ring fused to a benzene ring, i.e. benzimidazoles (astemizole, mebendazole, thiabendazole) and those having an aliphatic side chain on the N-1 of the imidazole ring (carbimazole, metronidazole, nimorazole, tinidazole) were only weak inhibitors of aromatase.  相似文献   

10.
The feasibility of utilizing rainbow trout, Oncorhynchus mykiss, as an alternative model for studying the inhibition of aromatase (CYP 19) was investigated. The suppression of estrogen-dependent tumors by aromatase inhibitors has been important in the treatment of breast cancer. Estrogens, estrogen precursors and xenoestrogens have been found to promote liver cancer in the trout model. A steroid, 4-hydroxy-4-androstene-3,17-dione (4-OHA), and non-steroids, aminoglutethimide (AG) and Letrozole (CGS 20267), all of which are known aromatase inhibitors in rats and humans, were examined in vitro for activity in trout ovarian microsomes. Aromatase activity was quantified as the release of 3H2O from the conversion of [3H]-4-androstene-3,17-dione to 17beta-estradiol and estrone. Trout ovarian microsomes exhibited activity between 39-60 fmol mg(-1) min(-1) with a calculated Vmax of 71.1 fmol mg(-1) min(-1) when incubated at 25 degrees C with 200 nM 4-androstene-3,17-dione (K(M) = 435 nM). Significant inhibition by 4-OHA up to 80% was seen at 1.5 microM. At 2000 microM, AG decreased aromatase activity by up to 82%. Letrozole reduced aromatase activity a maximum of 90% in a dose-dependent manner, but the Ki (2.3 microM) was 1000-fold higher than reported in human trials. Indole-3-carbinol and some of its derivatives, two DDE isomers and four flavones (except alpha-naphthoflavone) at 1000 microM did not significantly inhibit aromatase in vitro. Letrozole and clotrimazole, fed to juvenile rainbow trout at doses up to 1000 ppm for 2 weeks, were not effective in suppressing dehydroepiandrosterone (DHEA) induced increases in vitellogenin and 17beta-estradiol levels. These results document that trout aromatase is sensitive to inhibition in vitro by known inhibitors of the mammalian enzyme. The mechanism(s) for lack of inhibition in vivo is currently unknown and must be further investigated in order to develop a trout model for studying the role of aromatase in carcinogenesis.  相似文献   

11.
4-hydroxy-4-androstene-3,17-dione (4-OHA) has been shown to be a potent inhibitor of aromatase activity. It is effective in the control of estrogen-dependent processes in female subjects and may potentially be useful in the treatment of estrogen-dependent processes in men. Human foreskin fibroblasts grown in cell culture provide a model to investigate the effects of 4-OHA on extraglandular aromatase activity as well as the ability of the compound to influence androgen receptor binding and the 5 alpha-reduction of testosterone (T). Initial experiments were carried out to determine the potency of 4-OHA in genital skin fibroblasts by incubating cells with 4-OHA over a range of concentrations. When aromatase activity was determined at a substrate concentration close to the apparent Km of the enzyme, a 44% inhibition of enzyme activity occurred at a mean concentration of 5 nM 4-OHA. Enzyme kinetic studies analyzed by Eadie-Hofstee plots demonstrated competitive inhibition by 4-OHA with a mean apparent Ki of 2.7 nM. When 5 alpha-reductase activity was determined in the presence of 200 nM [3H]T, in the absence or presence of 4-OHA, a 50% inhibition of enzyme activity occurred at an inhibitor concentration of 3 microM. In androgen receptor binding studies, 4-OHA possessed 1% of the affinity of dihydrotestosterone (DHT) for [3H]DHT binding sites. In summary: 4-OHA is a potent and specific inhibitor of aromatase activity in human genital skin fibroblasts, the affinity of the enzyme for 4-OHA being greater than its affinity for the substrate, androstenedione. The influence of 4-OHA on 5 alpha-reductase activity and androgen receptor binding is minimal.  相似文献   

12.
Exemestane (FCE 24304; 6-methylenandrosta-1,4-diene-3,17-dione) is a novel orally active irreversible aromatase inhibitor. Its in vitro and in vivo pharmacological properties have been compared to 4-hydroxyandrostenedione (4-OHA). In preincubation studies with human placental aromatase, exemestane, like 4-OHA, showed enzyme inactivating properties with a similar affinity (Ki 26 vs 29 nM) and a lower rate of inactivation (t1/2 13.9 vs 2.1 min). Conversely, when tested in pregnant mares' serum gonadotropin-treated rats, exemestane was more potent in reducing microsomal ovarian aromatase activity than 4-OHA, after both subcutaneous (ED50 1.8 vs 3.1 mg/kg) and oral dosing (ED50 3.7 vs greater than 100 mg/kg). No interference of exemestane on desmolase or 5 alpha-reductase activity was found. The compound did not show any relevant binding affinity to steroidal receptors, but slight binding to the androgen receptor (approximately 0.2% of dihydrotestosterone), like 4-OHA. In the first phase I trial, healthy postmenopausal volunteers were given single oral doses of exemestane, ranging from 0.5 to 800 mg, and plasma [estrone (E1), estradiol (E2) and estrone sulphate (E1S)] and urinary estrogens (E1 and E2) were measured up to 5-8 days. The minimal effective dose in decreasing estrogens was 5 mg. At 25 mg the maximal suppression was observed at day 3: plasma estrogens fell to 35 (E1), 39 (E2) and 28% (E1S), and urinary estrogens fell to 20 (E1) and 25% (E2) of basal values, these effects still persisting on day 5. No effects on plasma levels of cortisol, aldosterone, 17-hydroxyprogesterone, DHEAS, LH and FSH, and no significant adverse events were observed up to the highest tested dose of 800 mg exemestane.  相似文献   

13.
The efficacies of 10-propargylestr-4-ene-3,17-dione (PED), 4-hydroxyandrostenedione (4-OHA) and the imidazole broad spectrum antimycotic drugs, econazole, imazalil, miconazole and ketoconazole, to inhibit the steroid aromatase activities of rat Leydig tumor (R2C) cells and human hepatoma (HEPG2) cells have been determined. The analysis of inhibition of steroid aromatase activity of intact cells provided further insight into the potential use of such drugs to block cellular estrogen synthesis. The IC50 values for the inhibition of aromatase activity of R2C cells by econazole, imazalil, miconazole, ketoconazole, 4-OHA and PED were 4, 9, 40, 1100, 11 and 10 nM, respectively. These drugs also inhibited the steroid aromatase activity of HEPG2 cells with corresponding IC50 values of 13, 27, 20, 15000, 2 and 2 nM, respectively; these findings were suggestive that the steroid aromatase of rat has many similarities to the human enzyme in its interaction with putative inhibitory compounds. Importantly, however, ketoconazole inhibited the rat aromatase more effectively than it did the human enzyme, while PED and 4-OHA were less effective inhibitors of the rat enzyme compared to that of human. These findings indicate differences in the potencies of various drugs to inhibit estrogen biosynthesis in human and rat cells. These may relate to differences in the two aromatase systems and/or differences in the stability of the drugs in the human hepatoma and rat Leydig tumor cells.  相似文献   

14.
A possible role of high oestradiol levels in mediating the adverse effects of hyperstimulation with pregnant mare serum gonadotrophin (PMSG) on early embryonic development in the rat was investigated using an aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA), to inhibit endogenous oestradiol production. Three experiments were conducted in this study. In the first, varying doses of 4-OHA were administered either concurrently with human chorionic gonadotropin (hCG) to pro-oestrus female rats hyperstimulated at early di-oestrus stage with 20 IU PMSG or alone into nonhyperstimulated pro-oestrus females. At high doses of 1000, 2000, or 5000 microg/rat, 4-OHA substantially improved the survival of embryos in hyperstimulated females, while low doses of 100 and 500 microg/rat were ineffective. The protective effect of 4-OHA on embryo count was optimum at 2000 microg. When administered alone, only the highest dose of 5000 microg/rat 4-OHA increased embryo count. In the second experiment, higher doses of PMSG were studied (30 or 40 IU), with or without 5000 microg/rat 4-OHA given at the time of hCG injection. PMSG proved to be more detrimental with increasing dose, and 5000 microg/rat 4-OHA was able to rescue embryos from death in the 30, but not 40, PMSG group. In the third experiment, the influence of the timing of 4-OHA treatment on its ability to improve the embryo count in hyperstimulated females was examined by introducing 4-OHA 24 h earlier, rather than at the time of hCG treatment. The results showed the importance of timing of 4-OHA administration, as 5000 microg/rat 4-OHA was able to restore embryo survival in the 40 PMSG hyperstimulated group only when it was administered 24 h before hCG injection. Together, these results highlighted that 4-OHA, when administered at the appropriate time and dose, could reverse the negative effects of hyperstimulation from PMSG on early embryonic development. This may be due to its potent aromatase inhibiting properties that lead to the suppression of oestrogen production, thereby alleviating the supraphysiological level of oestradiol, which is typically present in PMSG-treated females. Interestingly, 4-OHA treatment on its own was able to positively influence embryo count when given at a high dose of 5000 microg/rat, and this may be associated with its weak androgenic properties. In conclusion, this study supports the hypothesis that excessive oestradiol is responsible for the negative effects of hyperstimulation with PMSG on early embryonic development.  相似文献   

15.
Aromatase inhibition in postmenopausal women causes a marked fall in the plasma levels of oestrogens and is an effective treatment for breast cancer, however, trials with aminoglutethimide found that this aromatase inhibitor was ineffective in suppressing plasma oestrogen levels in premenopausal breast cancer patients. We found that the more potent inhibitor, 4-hydroxyandrostenedione (4-OHA), which can suppress oestrogen synthesis in rodents and non-human primates with intact ovarian function, was also unsuccessful as an oestrogen suppressant in premenopausal women at its maximum tolerated dose (500 mg/week i.m.). GnRH agonists are effective suppressants of ovarian oestrogen synthesis but oestrogen production from peripheral sites is unaffected. Our studies of a combination of the GnRH agonist goserelin and 4-OHA demonstrated that the combination caused greater oestrogen suppression than goserelin alone and led to objective clinical response in 4/6 breast cancer patients after their relapse from treatment with goserelin as a single agent. The combination of a GnRH agonist and an aromatase inhibitor should be subjected to clinical trials.  相似文献   

16.
An experimental study using human melanoma (NEL-MI), rat hepatoma (Fu5-5), and human kidney (293-31) cell lines was undertaken in order to evaluate the antitumor activity of 4-hydroxyanisole (4-OHA) in vitro. Prior reports have indicated highly specific antitumor activity of 4-OHA against melanoma cells in vitro. This specific antitumor activity has been proposed to be due to the oxidation of 4-OHA by tyrosinase to cytotoxic oxidation products. Dose-dependent cytotoxicity was observed when cells were cultured for 72 h in the presence of 4-OHA. At 100 microM, 4-OHA produced growth inhibition of 62%, 32%, and 55% in melanoma, hepatoma, and kidney cell lines, respectively. No effect was seen at 10 microM 4-OHA. 1,000 microM 4-OHA produced 100% kill. Tyrosinase activity was detected only in melanoma cells. The effect of 100 microM 4-OHA on the incorporation of 3H DNA precursors in melanoma, hepatoma, and kidney cells was also studied. Thymidine incorporation was inhibited in all three cell lines at the lowest cell density tested, with the greatest inhibition seen on melanoma cells. As cell density increased, the effect of 4-OHA on thymidine incorporation decreased. With respect to RNA synthesis, 4-OHA significantly reduced the incorporation of uridine in all three cell lines, with the greatest effect in melanoma cells. Cell density also affected the inhibition of uridine incorporation, but to a lesser extent than that observed on thymidine incorporation. The effect of 4-OHA on leucine incorporation was modest and uninfluenced by cell density. Thus, cytotoxicity of 4-OHA may involve two different mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
While hormone-dependent, mammary tumors induced with carcinogens (DMBA or NMU) in intact rats have been used extensively for studying aromatase inhibitors, there is currently no suitable model to investigate their effects in human breast cancers in vivo. While hormone responsive tumors can be formed in the athymic mouse using human breast carcinoma MCF-7 cells, due to the low ovarian estrogen production, tumor growth is induced with estradiol supplementation. Thus, this model is unsuitable for studies of aromatase inhibitors. We have induced tumors without the need for estrogen supplementation by co-inoculating MCF-7 cells with Matrigel, a basement membrane preparation, into intact athymic mice. In one experiment, 45 days after inocubation, mice were assigned to the control group or 4-hydroxyandrostenedione (4-OHA) (1 mg/day s.c.) treatment for 52 days. Tumor volumes in the control mice increased 672%, whereas tumor volumes in the treated mice did not change significantly (178.9 ± 16.2 to 336.6 ± 120 mm3). In the second experiment, 55 days after inoculation, groups of mice were treated with the antiestrogen, tamoxifen (5 μg/day s.c.) or vehicle (controls). Tumor volumes in the control mice increased 325% in 58 days, whereas there was no significant change in tumor volume in the tamoxifen treated group (338.8 ± 55.3 to 330.6 ± 84.9 mm3). The results suggest that (1) the tumors resulting from MCF-7 cells co-inoculated with Matrigel are estrogen-dependent and (2) tamoxifen and 4-OHA were effective in suppressing growth of these tumors. The results suggest that this model should be useful for evaluating the effects of aromatase inhibitors and for comparing breast cancer treatments.  相似文献   

18.
2,2-Dimethyl-4-hydroxy-4-androstene-3,17-dione (4) has been synthesized and has been shown to be a powerful competitive inhibitor of aromatase (Ki = 11.4 nM). However, compound 4 does not cause time-dependent loss of enzyme activity, in contrast to the unmethylated parent compound, 4-OHA.  相似文献   

19.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号