首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.

Background and Aims

Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species.

Methods

The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined.

Key Results

The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass.

Conclusions

All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.  相似文献   

2.
Water conductance through Abies amabilis seedlings was measured while the roots were exposed to temperatures from 15 to 0.25°C. Before conductance was measured, the seedlings were preconditioned for 3 months at either a high temperature (23°C) or a low temperature (3°C). For both groups of seedlings, conductance decreased as root temperature decreased. Conductance was lowest at 0.25°C. In addition, preconditioning at 3°C for 3 months significantly lowered conductance to water at all root temperatures. Under the same environmental conditions, seedlings preconditioned at 3°C had less than 25% of the transpirational water loss of seedlings preconditioned at high temperature. A decrease in leaf osmotic potential also resulted from low temperature preconditioning. In trees growing in the subalpine forest, which is the natural habitat of Abies amabilis, both decreased leaf conductance to water vapor and lower osmotic potentials were evident in winter. Since in winter the temperature of the soil in the subalpine zone remains less than 1°C for many months, lowered leaf conductance and decreased osmotic potentials appear to be mechanisms which aid in preventing desiccation damage.  相似文献   

3.
Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.  相似文献   

4.
Nobel PS 《Plant physiology》1976,58(4):576-582
The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year.  相似文献   

5.
ABA Uptake in Source and Sink Tissues of Sugar Beet   总被引:2,自引:2,他引:0       下载免费PDF全文
Daie J  Wyse R 《Plant physiology》1983,72(2):430-433
The mode of abscisic acid (ABA) uptake was studied in excised leaf and root tissue discs of sugar beet (Beta vulgaris L.). Discs were incubated in buffered medium that contained 1 mm CaCl2 and [14C]ABA. The sensitivity of ABA uptake to metabolic inhibitors and temperature indicated that the ABA transport system had an energy-dependent component. Energy-dependent uptake was greater in leaf than in root tissue (70% and 50%, respectively). Energy-dependent uptake by both tissues and passive uptake by root tissues were highly pH dependent. Maximal uptake was observed at pH 5.5. Leaf tissue incubated in the dark showed a 50% reduction of uptake as compared with tissue under light. The decrease was due to reduced passive uptake.  相似文献   

6.
通过比较实验导出用于研究草原群落中不同植物种群起始吸水层研究方法,暂称之为"土体挖空法"。该方法是将土壤剖面的下部挖空,保留上面0—5、0—10、0—15 cm的土层和上面的全部植物,当从地表浇的水在被挖空部分的向下表面开始渗出时测定哪些植物种群吸收了水分。实验中用于检验植物是否吸水的方法是用水势仪测定法。在内蒙古锡林郭勒盟白音锡勒牧场中国科学院草原生态系统定位研究站的实验样地上,通过对处于不同退化恢复演替阶段的草原群落中主要植物种群的研究得出以下结论:1)同一群落中不同植物种间根系起始吸水层存在差异,在恢复群落中存在根系起始吸水位置的生态位分离和重叠现象,其中黄囊苔草(Carex korshinskyi)、冷蒿(Artemisia frigida)、糙隐子草(Cleistogenes squarrosa)的起始吸水层位置表明它们在对土壤中水资源利用空间维上存在空间生态位重叠现象;羊草(Leymus chinensis)、大针茅(Stipa grandis)、米氏冰草(Agropyron michnoi)之间也存在类似的生态位重叠;两组植物种群间存在对土壤中水资源利用空间维上的空间生态位分离现象。2)无论是否退化的草原群落,其中黄囊苔草、冷蒿、糙隐子草的根系起始吸水层深度保持不变;在严重退化的群落中羊草、大针茅、米氏冰草同种个体的起始吸水层则变浅,即呈浅层化分布现象。退化群落中,植物体小型化和根系浅层化的同时植物根系对水分吸收的起始位置总体呈浅层化。3)典型草原群落中各植物种群间存在较大幅度的生态位重叠和一定的生态位分离,其中生态位分离的幅度较小,重叠的程度较大。  相似文献   

7.
For studies into the uptake of mercury vapor by wheat (Triticum aestivum), a simple theory and plant chamber were employed to estimate total leaf resistance of whole plants to water vapor exchange. The estimates were independent of leaf temperature, for which mean values were indirectly determined. The approach involved the measurement, at steady-state conditions, of the net change in water vapor flux per unit of leaf surface (Δqv) in response to a small induced change in absolute humidity (ΔCa). Assuming that total leaf resistance (rl) was constant and that change in leaf temperature (Tl) was negligible, total leaf resistance was calculated from the equation, [Formula: see text]  相似文献   

8.
Young seedlings ofGmelina arborea Roxb. were subjected to 2 weeks of drought. Despite the gradual reduction in stomatal conductance, leaf and root growth was not affected until the later part of the stress period. This was attributed to solute adjustment in the roots of the plants. As the severity of water stress increased, root growth was prolific in all the soil segments. As a result, water in the lowest soil segment was used to maintain plant turgor, which in turn sustains the leaf and root growth during the water-stress treatment. The influence of soil water content and soil water potential upon soil water uptake rate was also evaluated on soil profile basis. Rates of extraction began to decline in all soil segments as soon as soil water potential fell below -0.06 MPa, presumably as a result of vapour gaps between the root and soil (root: soil interface resistance). It is suggested that the growth of roots ofGmelina plants away from drying soil will minimize the resistance to water uptake.  相似文献   

9.
A root excision technique was used to estimate the proportionof total resistance to water flux residing in the soil, theroot, and the xylem of lodgepole pine (Pinus contorta Douglex. Loud.) trees in the field. Root excision at mid-day alwaysresulted in rapid recovery of leaf water potential when waterwas supplied to the cut stem, suggesting a high soil-root resistance.Transpiration was unaffected if leaf water potential beforecutting was not limiting leaf conductance. By mid-June wateruptake by the excised stem always exceeded calculated crowntranspiration indicating recharge of internal sapwood storage.Predawn leaf water potential before root excision was highlycorrelated with total soil-plant resistance (r2 = 0·89)and calculated root water uptake (r2 = 0·92).  相似文献   

10.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

11.
Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.  相似文献   

12.
Red osier dogwood (Cornus stolonifera Michx.) was artificially acclimated by exposing plants to 8-hour short days (SD) and low (15/5 C) temperatures for 54 to 63 days. Several factors including transpiration rate, stomatal resistance, and root conductivity were correlated so that the rate of water loss in acclimating plants was higher during the first 30 to 40 days of the acclimation sequence. Six days after transferring plants to SD conditions, the stomatal resistance (r8) decreased significantly below the r8 of the 16-hour long day (LD) control plants at the same temperature. Transpiration rate increased by approximately 20 to 30% in the plants transferred to SD. After the initially higher transpiration rate and greater stomatal opening, the stomates closed tightly during the last 2 weeks of acclimation and the transpiration rate of the SD plants dropped to well below the LD control plants. By the end of the acclimation sequence, root conductivity to water uptake was two to three times lower in the SD plants. Leaf xylem water potentials were similar or slightly lower in the plants kept under SD conditions during the first 5 to 7 weeks of the acclimation sequence. During the last 10 to 15 days of acclimation when the stomates closed, SD leaf water potential rose significantly above the plants in the LD conditions. During acclimation, stem water content decreased by 40 to 50%. Changes in tissue hydration can be indirectly related to plant hardiness and may be affected by alteration of stomatal resistance, transpiration rate, and root conductivity during acclimation.  相似文献   

13.
Xylem pressure potentials and stomatal diffusion resistances were measured in the field in Ilex opaca Ait. during days which differed in temperature and vapor pressure deficit. Water flux into leaves was calculated by combining the field data with laboratory determinations of the relation between tissue water deficit and water potential. Estimates of apparent plant resistance were then calculated from fluxes and differences between soil water potential and xylem tension. The resistance depended strongly on water flux, dropping by a factor of over 7 from low to high water flow rates. This extends the generality of variable plant resistances measured in controlled environment studies to I. opaca as it occurs naturally in the field. The relation of apparent plant resistance to water flux as estimated in this study can be useful in simulation models which calculate water uptake to leaves as a flux driven by a difference in soil and leaf water potentials across a resistance between the bulk soil and the leaf.  相似文献   

14.
M. Zeroni  J. Gale 《Plant and Soil》1987,104(1):93-98
Rose plants (Rosa hybrida ‘Sonia’=‘Sweet Promise’) were grown in heated (minimum night temperature 17°C), and unheated greenhouses with or without root heating to 21°C. These trials covered 6 growth cycles extending over two winter seasons. In the heated greenhouse, root heating did not increase yield, flower quality or plant development. In the unheated greenhouse, root-heated plants grew as well as those in the air-heated greenhouse as long as the air temperature did not fall below 6°C. When minimum night temperatures fell below 6°C, growth, yield and quality were reduced, irrespective of root temperature. Daytime plant water relations were studied in plants growing at 6 different root temperatures in the unheated greenhouse. Leaf resistance to water diffusion was lowest at optimal root temperature. Total leaf water potential was not significantly affected by root temperature.  相似文献   

15.
Detrimental effect of rust infection on the water relations of bean   总被引:3,自引:0,他引:3       下载免费PDF全文
Bean plants (Phaseolus vulgaris L.) infected with the rust Uromyces phaseoli became unusually susceptible to drought as sporulation occurred. Under the conditions used (1,300 ft-c, 27 C, and 55% relative humidity) such plants wilted at soil water potentials greater than −1 bar, whereas healthy plants did not wilt until the soil water potential fell below −3.4 bars. Determinations of leaf water and osmotic potentials showed that an alteration in leaf osmotic potential was not responsible for the wilting of diseased plants. When diffusive resistance was measured as a function of decreasing leaf water content, the resistance of healthy leaves increased to 50 sec cm−1 by the time relative water content decreased to 70%, whereas the resistance of diseased leaves remained less than 8 sec cm−1 down to 50% relative water content. Apparently, water vapor loss through cuticle damaged by the sporulation process, together with the reduction in root to shoot ratio which occurs in diseased plants, upset the water economy of the diseased plant under mild drought conditions.  相似文献   

16.
Low root temperature effects on vegetative growth of soybean (Harosoy 63 × Rhizobium japonicum USDA 16) were examined in 35 day old plants exposed to temperatures of 15°C (shoots at 25°C) for an 11 day period. Duing this period various aspects of C and N assimilation and partitioning were monitored including shoot night and nodulated root respiration, C and N partitioning to six plant parts, C2H2 reduction, H2 evolution, leaf area, transpiration, net photosynthesis, and N2 fixation. The low temperature treatment resulted in a decrease in the net rate of N2 fixation but nitrogenase relative efficiency increased. In response, the plant retained N in the tissues of the nodulated root and decreased N partitioning to young shoot tissues, thereby inducing the remobilization of N from older leaves, and reducing leaf area development. The leaf area specific rate of net photosynthesis was not affected over the study period; however, shoot and nodulated root respiration declined. Consequently, C accumulated in mature leaves and stems, partly in the form of increased starch reserves. Three possibilities were considered for increasing low temperature tolerance in nodulated soybeans: (a) decrease in temperature optima for nitrogenase, (b) increased development of nodules and N2 fixation capacity at low temperature, and (c) alterations in the pattern of C and N partitioning in response to low temperature conditions.  相似文献   

17.
Summary The hydraulic resistivity ofVicia faba L. roots grown in soil was estimated from steady state measurements of transpiration rate and leaf and soil water potentials. Root and stem axial resistivities, estimated from xylem vessel radii, were negligible. Root radial resistivity was estimated to be 1.3×1012 sm−1. This root radial resistivity value was used to estimate, root resistance to water uptake for a field crop ofVicia faba. Previously published results were used for root distribution and soil water contents at the drained upper limit (DUL) and the lower limit (LL) of extractable soil water. Soil resistance to water uptake was estimated from single root theory using the steady rate solution. At the DUL, root resistance was about 105 times greater than soil resistance. At the LL, soil resistance exceeded root resistance for depths less than 0.3 m, but for depths greater than this soil resistance was smaller than root resistance. Estimates of possible uptake rates at given leaf water potentials indicated that overall soil resistance had a negligible influence upon uptake, even at the LL. The reliability of this result is examined in detail. It is concluded that over the complete range of extractable soil water contents soil resistanceper se would not have limited water use by this crop. This conclusion may also be valid for a wide range of soil and crop combinations.  相似文献   

18.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Global warming will increase heat waves, but effects of abrupt heat stress on shoot–root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab = 5.5 days at daytime of 30 + 5 or 10 °C; field = 5 days at ambient (up to 32 °C daytime) vs. ambient +10 °C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. 13C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil 15N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10 cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.  相似文献   

20.
Root temperature strongly affects shoot growth, possibly via “nonhydraulic messengers” from root to shoot. In short-term studies with barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) seedlings, the optimum root temperatures for leaf expansion were 25° and 35°C, respectively. Hydraulic conductance (Lp) of both intact plants and detached exuding roots of barley increased with increasing root temperature to a high value at 25°C, remaining high with further warming. In sorghum, the Lp of intact plants and of detached roots peaked at 35°C. In both species, root temperature did not affect water potentials of the expanded leaf blade or the growing region despite marked changes in Lp. Extreme temperatures greatly decreased ion flux, particularly K+ and NO3, to the xylem of detached roots of both species. Removing external K+ did not alter short-term K+ flux to the xylem in sorghum but strongly inhibited flux at high temperature in barley, indicating differences in the sites of temperature effects. Leaf growth responses to root temperature, although apparently “uncoupled” from water transport properties, were correlated with ion fluxes. Studies of putative root messengers must take into account the possible role of ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号