首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation.  相似文献   

2.
3.
Summary Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

4.
A highly-efficient protocol for the large-scale isolation ofguard cell protoplasts from sugar beet (Beta vulgaris L.) hasbeen developed. Optimization of conditions for culturing theseprotoplasts resulted in extensive cell division and colony formation,at frequencies exceeding 50%. Plants can subsequently be regeneratedfrom these guard cell-derived colonies. This provides definitiveconfirmation that, in sugar beet leaf protoplast populations,only guard cells are the source of totipotent protoplasts. Thesefindings are the outcome of a directed, non-empirical approachto overcoming plant cell recalcitrance which was initiated byexploiting computer-assisted microscopy to couple in vitro responseto cell origin. The results reaffirm the conclusion that, inplants, extreme degrees of cytodifferentiation need not entailterminal specialization. The responsive nature of this systemcan be ascribed to the unique use of cultures essentially comprisinga single in vivo cell type. A uniform model system has thusbeen created with potential for widespread application. Theirdistinct morphological (and mechanical) features make guardcells a valuable choice for studying various fundamental aspects,not only of stomatal physiology, but also of plant cell (de)differentiation,differential gene expression etc. Furthermore, an applied valuefor such a system can also be envisaged. Results indicate thatthese cells are highly amenable to genetic manipulation techniques.The importance of these observations to our understanding ofplant cell function and behaviour is discussed. Key words: Beta, guard cells, stomatal physiology, totipotency, transformation  相似文献   

5.
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.  相似文献   

6.
7.
Theodor Butterfass 《Planta》1969,84(3):230-234
Summary In order to investigate whether during mitosis of guard cell mother cells the plastids are distributed to the daughter cells at random, a haploid of Trifolium hybridum, a species with only three to four chloroplasts in one diploid guard cell, was searched for and found. As expected, the guard cell mother cells in this plant contained only about two plastids. If distribution to the daughter cells would occur strictly at random, among the guard cell pairs with two chloroplasts the pairs with 1/1 and those with 2/0 chloroplasts should appear in equal amounts. However, 159 pairs of type 1/1 and only 35 pairs of type 2/0 were found, i.e., 18% of type 2/0 (upper limit of 99% confidence interval: 25%), indicating that the plastids have been apportioned to a fairly great degree. The result may be understood by considering that the plastids in guard cell mother cells are not scattered at random throughout the cell space, but are more regularly spread as are the chloroplasts in adult cells.  相似文献   

8.
Under drought stress, the stress hormone ABA addresses the SnR kinase OST1 via its cytosolic receptor and the protein phosphatase ABI1. Upon activation, OST1 phosphorylates the guard cell S–type anion channel SLAC1. Arabidopsis ABI1 and OST1 loss‐of‐function mutants are characterized by an extreme wilting 'open stomata′ phenotype. Given the fact that guard cells express both SLAC‐ and R–/QUAC‐type anion channels, we questioned whether OST1, besides SLAC1, also controls the QUAC1 channel. In other words, are ABI1/OST1 defects preventing both of the guard cell anion channel types from operating properly in terms of stomatal closure? The activation of the R–/QUAC‐type anion channel by ABA signaling kinase OST1 and phosphatase ABI1 was analyzed in two experimental systems: Arabidopsis guard cells and the plant cell‐free background of Xenopus oocytes. Patch‐clamp studies on guard cells show that ABA activates R–/QUAC‐type currents of wild‐type plants, but to a much lesser extent in those of abi1–1 and ost1–2 mutants. In the oocyte system the co‐expression of QUAC1 and OST1 resulted in a pronounced activation of the R–type anion channel. These studies indicate that OST1 is addressing both S–/SLAC‐ and R–/QUAC‐type guard cell anion channels, and explain why the ost1–2 mutant is much more sensitive to drought than single slac1 or quac1 mutants.  相似文献   

9.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.  相似文献   

10.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

11.
The Arabidopsis metallothionein genes AtMT1andAtMT2confer Cd(II) resistance to Cd(II)-sensitive yeast, but it has not been directly shown whether they or other metallothioneins provide the same protection to plants. We tested whether AtMT2aandAtMT3can confer Cd(II) resistance to plant cells by introducing GFP- or RFP-fused forms into guard cells of Vicia faba by biolistic bombardment. AtMT2a and AtMT3 protected guard cell chloroplasts from degradation upon exposure to Cd(II), an effect that was confirmed using an FDA assay to test the viability of the exposed guard cells. AtMT2a- and AtMT3-GFP were localized in the cytoplasm both before and after treatment of V. faba guard cells or Arabidopsis protoplasts with Cd(II), and the levels of reactive oxygen species were lower in transformed guard cells than in non-transformed cells after Cd(II)-treatment. These results suggest that the Cd(II)-detoxification mechanism of AtMT2a and AtMT3 may not include sequestration into vacuoles or other organelles, but does involve reduction of the level of reactive oxygen species in Cd(II)-treated cells. Increased expression of AtMT2a and AtMT3 was observed in Arabidopsis seedlings exposed to Cd(II). Together, these data support a role for the metallothioneins AtMT2a and AtMT3 in Cd(II) resistance in intact plant cells.  相似文献   

12.
Stomatal regulation is essential for the growth of land plants. Pairs of guard cells that delineate the stomata perceive stimuli and respond to acquire the optimum aperture. The actin cytoskeleton participates in signaling pathways of the guard cell (Kim et al., 1995; Eun and Lee, 1997; Hwang et al., 1997). To identify the upstream molecules that regulate actin dynamics in plant cells, we immunoblotted proteins extracted from leaves ofCommelina commuais L. with the RhoA antibody, and identified one band of 26KD from the epidermis. Using immunofluorescence microscopy, we examined the subcellular distribution of the immuno-reactant(s) in guard cells. When stomata were open under light, the organization of the immuno-reactant(s) resembled the radial arrangement of cortical actin filaments of guard cells. Double-labeling of the guard cells, using the RhoA and actin antibodies as primary antibodies, showed that the immuno-reactant(s) of the RhoA antibody and actin filaments co-localized in the cortex of illuminated guard cells. However, the pattern was not found in guard cells when stomata were closed under darkness or by ABA, conditions under which cortical actin proteins are disassembled in guard cells. From these observations, we can suggest the possible presence of a RhoA-like protein and its involvement in the organization of the actin cytoskeleton in guard cells.  相似文献   

13.
Exosomes are 30–150 nm vesicles that are secreted from a range of cells. Recently, exosomes have been the subject of considerable research because there is mounting awareness of their diverse functions, including a role in cell–cell communication and presenting pathogens for immune responses. Exosomes contain diverse nucleic acid and protein cargos, derived not only from the organism but also from pathogens, making them suitable for use in disease diagnosis. The Korean rhinoceros beetle, Allomyrina dichotoma (Coleoptera: Scarabaeidae), is commercially reared in Korea for the pet trade and is used in traditional medicine for liver‐related diseases. However, several insect diseases caused by bacteria, fungi and viruses have been reported in A. dichotoma mass‐rearing facilities. Identifying these diseases with accuracy and in a timely manner is of paramount importance. Such diagnosis can be accomplished by identifying the nucleic acid or amino acid fragments from these disease‐causing pathogens in the exosome of A. dichotoma. We isolated exosomes from the hemolymph of A. dichotoma and used them to analyze exosome RNA and proteins. We confirmed the isolation of exosomes through RNA profiling, protein analysis and Western blotting. Our research established a solid foundation for using insect exosome protein and RNA analyses for the accurate diagnosis of insect diseases. To our knowledge, this is the first report of exosome isolation from insect hemolymph.  相似文献   

14.
Guard cell walls combine exceptional strength and flexibility in order to accommodate the turgor pressure-driven changes in size and shape that underlie the opening and closing of stomatal pores. To investigate the molecular basis of these exceptional qualities, we have used a combination of compositional and functional analyses in three different plant species. We show that comparisons of FTIR spectra from stomatal guard cells and those of other epidermal cells indicate a number of clear differences in cell-wall composition. The most obvious characteristics are that stomatal guard cells are enriched in phenolic esters of pectins. This enrichment is apparent in guard cells from Vicia faba (possessing a type I cell wall) and Commelina communis and Zea mays (having a type II wall). We further show that these common defining elements of guard cell walls have conserved functional roles. As previously reported in C. communis, we show that enzymatic modification of the pectin network in guard cell walls in both V. faba and Z. mays has profound effects on stomatal function. In all three species, incubation of epidermal strips with a combination of pectin methyl esterase and endopolygalacturonase (EPG) caused an increase in stomatal aperture on opening. This effect was not seen when strips were incubated with EPG alone indicating that the methyl-esterified fraction of homogalacturonan is key to this effect. In contrast, arabinanase treatment, and incubation with feruloyl esterase both impeded stomatal opening. It therefore appears that pectins and phenolic esters have a conserved functional role in guard cell walls even in grass species with type II walls, which characteristically are composed of low levels of pectins.  相似文献   

15.
Meckel T  Hurst AC  Thiel G  Homann U 《Protoplasma》2005,226(1-2):23-29
Summary. During stomatal movement, guard cells undergo large and reversible changes in cell volume and consequently surface area. These alterations in surface area require addition and removal of plasma membrane material. How this is achieved is largely unknown. Here we summarize recent studies of membrane turnover in guard cells using electrophysiology and fluorescent imaging techniques. The results implicate that membrane turnover in guard cells and most likely in plant cells in general is sensitive to changes in membrane tension. We suggest that this provides a mechanism for the adaptation of surface area of guard cells to osmotically driven changes in cell volume. In addition, guard cells also exhibit constitutive membrane turnover. Constitutive and pressure-driven membrane turnover were found to be associated with addition and removal of K+ channels. This implies that some of the exo- and endocytic vesicles carry K+ channels. Together the results demonstrate that exo- and endocytosis is an essential process in guard cell functioning. Correspondence and reprints: Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3, 64287 Darmstadt, Federal Republic of Germany.  相似文献   

16.
Recent advances in the study of plant developmental and physiological responses have benefited from tissue‐specific approaches, revealing the role of some cell types in these processes. Such approaches have relied on the inactivation of target cells using either toxic compounds or deleterious genes; however, both tissue‐specific and truly inducible tools are lacking in order to precisely target a developmental window or specific growth response. We engineered the yeast fluorocytosine deaminase (FCY1) gene by creating a fusion with the bacterial uracil phosphoribosyl transferase (UPP) gene. The recombinant protein converts the precursor 5‐fluorocytosine (5‐FC) into 5‐fluorouracyl, a drug used in the treatment of a range of cancers, which triggers DNA and RNA damage. We expressed the FCY‐UPP gene construct in specific cell types using enhancer trap lines and promoters, demonstrating that this marker acts in a cell‐autonomous manner. We also showed that it can inactivate slow developmental processes like lateral root formation by targeting pericycle cells. It also revealed a role for the lateral root cap and the epidermis in controlling root growth, a faster response. The 5‐FC precursor acts systemically, as demonstrated by its ability to inhibit stomatal movements when supplied to the roots in combination with a guard cell‐specific promoter. Finally, we demonstrate that the tissular inactivation is reversible, and can therefore be used to synchronize plant responses or to determine cell type‐specific functions during different developmental stages. This tool will greatly enhance our capacity to understand the respective role of each cell type in plant physiology and development.  相似文献   

17.
18.
Stomata, functionally specialized small pores on the surfaces of leaves, regulate the flow of gases in and out of plants. The pore is opened by an increase in osmotic pressure in the guard cells, resulting in the uptake of water. The subsequent increase in cell volume inflates the guard cell and culminates with the opening of the pore. Although guard cells can be regarded as one of the most thoroughly investigated cell types, our knowledge of the signaling pathways which regulate guard cell function remains fragmented. Recent research in guard cells has led to several new hypotheses, however, it is still a matter of debate as to whether guard cells function autonomously or are subject to regulation by their neighboring mesophyll cells. This review synthesizes what is known about the mechanisms and genes critical for modulating stomatal movement. Recent progress on the regulation of guard cell function is reviewed here including the involvement of environmental signals such as light, the concentration of atmospheric CO2 and endogenous plant hormones. In addition we re-evaluate the important role of organic acids such as malate and fumarate play in guard cell metabolism in this process.Key words: stomata movement, ions, organic acids, malate, fumarate, CO2, ABA, light  相似文献   

19.
20.
Mitochondria are known to participate in the initiation of programmed cell death (PCD) in animals and in plants. The role of chloroplasts in PCD is still unknown. We describe a new system to study PCD in plants; namely, leaf epidermal peels. The peel represents a monolayer consisting of cells of two types: phototrophic (guard cells) and chemotrophic (epidermal cells). The peels from pea (Pisum sativum L.) leaves were treated by cyanide as an inducer of PCD. We found an apoptosis-enhancing effect of illumination on chloroplast-containing guard cells, but not on chloroplastless epidermal cells. Antioxidants and anaerobiosis prevented the CN-induced apoptosis of cells of both types in the dark and in the light. On the other hand, methyl viologen and menadione known as ROS-generating reagents as well as the Hill reaction electron acceptors (BQ, DAD, TMPD, or DPIP) that are not oxidized spontaneously by O2 were shown to prevent the CN-induced nucleus destruction in guard cells. Apoptosis of epidermal cells was potentiated by these reagents, and they had no influence on the CN effect. The light-dependent activation of CN-induced apoptosis of guard cells was suppressed by DCMU, stigmatellin or DNP-INT, by a protein kinase inhibitor staurosporine as well as by cysteine and serine protease inhibitors. The above data suggest that apoptosis of guard cells is initiated upon a combined action of two factors, i.e., ROS and reduced plastoquinone of the photosynthetic electron transfer chain. As to reduction of ubiquinone in the mitochondrial respiratory chain, it seems to be antiapoptotic for the guard cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号