首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The lipid bis(guanidinium)-tren-cholesterol (BGTC) is a cationic cholesterol derivative bearing guanidinium polar headgroups used for gene transfection either alone or formulated as liposomes with the zwitterionic lipid 1,2-di-[cis-9-octadecenoyl]-sn-glycero-3-phosphoethanolamine (DOPE). Previous investigations have shown its ability to strongly interact with DNA and form asymmetric lipid bilayers at the air/water interface when mixed with DOPE. Here, with a view to further investigate its physicochemical behavior, we studied the interactions of mixtures of BGTC with another zwitterionic lipid, 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, (DMPC), with DNA at the air/water interface by using the Langmuir monolayer technique coupled with Brewster Angle Microscopy (BAM) and Polarization Modulation Infra Red Reflexion Absorption (PMIRRAS) spectroscopy and we investigate DNA–BGTC/DMPC interactions. We demonstrate that when DNA is injected into the subphase in excess compared to the positive charges of BGTC, it adsorbs to BGTC/DMPC monolayers at 20 mN/m whatever the lipid monolayer composition (1/5, 2/3 or 3/2 BGTC/DMPC molar ratio) and forms an incomplete monolayer of either isotropic or anisotropic double strands depending on the BGTC content in the monolayer. Compression beyond the collapse of some mixed DNA–BGTC/DMPC (2/3 and 3/2 molar ratio) systems leads to the formation of DNA monolayers underneath asymmetric lipid bilayers characterized by a bottom layer of BGTC in contact with DNA and a top layer mainly constituted of DMPC.  相似文献   

3.
Polarized absorption spectra have been obtained of the antibiotic polyene, amphotericin B, interacting with monolayers of egg lecithin, cholesterol and equimolar egg lecithin-cholesterol at low and high surface pressures. An expression is derived which enables the determination from the polarization data of the orientations of the transition moments of the polyene absorption bands at 4077 and 3645 Å. For some of the systems the 3645-Å band is replaced by a previously unreported band appearing between 3610 and 3632 Å. The orientation of the 4077-Å transition moment (parallel to the long molecular axis) is found to vary from an angle of 64 ° with the surface for the low-pressure monolayers of cholesterol to 21 ° for the high-pressure films of egg lecithin-cholesterol. For the band between 3610 Å and 3645 Å, the angle varies from 90 ° for cholesterol to 18 ° for the high-pressure mixed-lipid film. It is found that a large increase in surface pressure of the cholesterol and egg lecithin-cholesterol monolayers causes a decrease in the angle of the 4077-Å moment for both films and that of the higher energy moment for the mixed film. Increasing the content of cholesterol in these monolayers rotates the orientation of the transition moments for both bands toward the surface normal, the change being greatest for the low-pressure films. The effectiveness of amphotericin B in lowering the surface tension of these lipid monolayers is related to its binding, orientation and extent of penetration. For low-pressure cholesterol films where the surface interaction with the polyene is greatest, the binding and penetration are large and the polyene molecule is oriented with its long dimension nearly perpendicular to the surface.  相似文献   

4.
The aim of this work is to study the phase diagram of mixed monolayers composed of dimyristoylphosphatidylcholine (DMPC) and stearic acid (SA) at different ionic strength and bulk pH of the aqueous subphase. In this way, the effect of ionization of SA on the interaction and thus on phase separation with the DMPC matrix can be analyzed. To this purpose, we first determined the ionization state of pure SA monolayers as a function of the bulk subphase pH. The SA monolayers are nearly fully ionized at pH 10 and essentially neutral at pH 4 and the mixture of DMPC and SA was studied at those two pHs. We found that the DMPC-enriched phase admits more SA if the SA monolayer is in a liquid-expanded state, which is highly related to the acid ionization state, and thus to the bulk pH and ionic strength. At pH 4 the molecules hardly mix while at pH 10 the mixed monolayer with DMPC can admit between 30 and 100% of SA (depending on the lateral pressure) before phase separation is established. The addition of calcium ions to the subphase has a condensing effect on SA monolayers at all pHs and the solubility of SA in the DMPC matrix does not depend on the bulk pH in these conditions. The observed phase diagrams are independent on the manner in which the state of the mixed film is reached and may thus be considered states of apparent equilibrium.  相似文献   

5.
Both the steroidal glycoalkaloid mixture from potato (α-solanine and α-chaconine) and pure α-tomatine are able to complex with the sterols cholesterol, sitosterol, stigmasterol, campesterol and ergosterol in vitro. The sterol-complexing ability of tomatine was greater than that of the potato alkaloids and more akin to that of the steroidal saponin, digitonin. With all three compounds, cholesterol was the least-readily bound sterol while binding to other sterols was of a similar order. Complex formation with tomatine was not markedly influenced by temperature, and with the aglycone tomatidine did not appear to occur at all.  相似文献   

6.
Band 3 protein of the human erythrocyte membrane, the anion transport protein, possesses a high affinity steroid binding site. In mixed phospholipid—cholesterol monolayers, the state of occupancy of this site is positively correlated with their cholesterol and sphingomyelin content and negatively with their glycerophospholipid content. We suggest that, in the erythrocyte membrane, the binding site is an inhibitory site of anion transport and that the modulation of its state of occupancy by the membrane lipid is responsible for the negative correlation of anion transport with the membrane's content of cholesterol and sphingomyelin and the positive correlation with the phosphatidylcholine content  相似文献   

7.
The uptake of radioactive cholesterol and sitosterol by rat jejunal villus cells was examined using mixed micellar solutions containing sodium taurocholate, equimolar mixtures of the two sterols, and a variety of phospholipid types. The addition of phospholipid to the incubation solutions reduced the cellular absorption of both sterols and gave rise to uptake kinetics that were linear with time. In the presence of egg yolk phospholipid, uptake of the sterols by villus cells occurred with a modest preference for cholesterol over sitosterol. The ratio of accumulated cholesterol/sitosterol increased from 1.0 initially to 1.23 +/- 0.04 (n = 18) after a 30-min incubation at 37 degrees C. The selectivity displayed in the villus cells increased significantly as egg phosphatidylethanolamine was added to the egg phosphatidylcholine (PC) preparation in micellar solution. It was markedly decreased when dipalmitoyl PC or the primarily saturated egg yolk sphingomyelin were incorporated into the micelles. In every case examined, phospholipid was taken up by the cells concurrently with the sterols. The selectivity between cholesterol and sitosterol was maintained when the donor species were multilamellar vesicles composed of egg PC and the sterols, but not when the donor particles were albumin-stabilized sterol dispersions or taurocholate solutions in the absence of PC. The results show that the selective absorption of cholesterol over the plant sterol occurs only in the presence of unsaturated phospholipid. The phospholipid may act by influencing the permeability of the cellular membranes to the two sterols or the rate of sterol desorption from the phospholipid-containing micellar or liposomal carriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The influence of the liquid-expanded or liquid-condensed state of the lipid interface induced by changes of temperature on the lipid-protein interactions and their two-dimensional miscibility was studied for mixtures of melittin with different phospholipids (DPPC, DMPC, DOPC egg PC) and gangliosides (GM1, GD1a) in mixed monolayers at the air/145 mM NaCl interface. The critical amount of melittin at which a phase separation takes place in the mixed film increases as the glycosphingolipid or phospholipid is more liquid-expanded. The lipid-protein interaction increases the stability of both melittin and the lipid. The interaction of melittin with gangliosides is thermodynamically more favorable as these are more liquid-expanded. The interaction of melittin with phospholipids, on the other hand, is more favorable when the lipids are in the liquid-condensed state even if these films show lateral immiscibility at a lower proportion of protein compared to lipids in the liquid-expanded state. Hydration-dehydration effects in the polar head group region are likely to participate in these lipid-protein interactions.  相似文献   

9.
We have analyzed the interaction of adamantyl Gb(3) (adaGb(3)), a semi-synthetic soluble analog of Gb(3), with HIV-1 surface envelope glycoprotein gp120. In this analog, which was orginally designed to inhibit verotoxin binding to its glycolipid receptor, Gb(3), the fatty acid chain is replaced with a rigid globular hydrocarbon frame (adamantane). Despite its solubility, adaGb(3) forms monolayers at an air-water interface. Compression isotherms of such monolayers demonstrated that the adamantane substitution resulted in a larger minimum molecular area and a more rigid, less compressible film than Gb(3). Insertion of gp120 into adaGb(3) monolayers was exponential whereas the gp120/Gb(3) interaction curve was sigmoidal with a lag phase of 40 min. Adding cholesterol into authentic Gb(3) monolayers abrogated the lag phase and increased the initial rate of interaction with gp120. This effect of cholesterol was not observed with phosphatidylcholine or sphingomyelin. In addition, verotoxin-bound adaGb(3) or Gb(3) plus cholesterol was recovered in fractions of comparable low density after ultracentrifugation through sucrose-density gradients in the presence of Triton X-100. The unique biological and physico-chemical properties of adaGb(3) suggest that this analog may be a potent soluble mimic of Gb(3), providing a novel concept for developing GSL-derived viral fusion inhibitors.  相似文献   

10.
Equinatoxin-II is a eukaryotic pore-forming toxin belonging to the family of actinoporins. Its interaction with model membranes is largely modulated by the presence of sphingomyelin. We have used large unilamellar vesicles and lipid monolayers to gain further information about this interaction. The coexistence of gel and liquid-crystal lipid phases in sphingomyelin/phosphatidylcholine mixtures and the coexistence of liquid-ordered and liquid-disordered lipid phases in phosphatidylcholine/cholesterol or sphingomyelin/phosphatidylcholine/cholesterol mixtures favor membrane insertion of equinatoxin-II. Phosphatidylcholine vesicles are not permeabilized by equinatoxin-II. However, the localized accumulation of phospholipase C-generated diacylglycerol creates conditions for toxin activity. By using epifluorescence microscopy of transferred monolayers, it seems that lipid packing defects arising at the interfaces between coexisting lipid phases may function as preferential binding sites for the toxin. The possible implications of such a mechanism in the assembly of a toroidal pore are discussed.  相似文献   

11.
The surface pressure (pi)-molecular area (A) isotherms for monolayers of human high-density lipoprotein (HDL3) and low-density lipoprotein (LDL) phospholipids and of mixed monolayers of these phospholipids with cholesterol spread at the air-water interface were used to deduce the likely molecular packing at the surfaces of HDL3 and LDL particles. LDL phospholipids form more condensed monolayers than HDL3 phospholipids; for example, the molecular areas of LDL and HDL3 phospholipids at pi = 10 dyn/cm are 88 and 75 A2/molecule, respectively. The closer packing in the LDL phospholipids monolayer can be attributed to the higher contents of saturated phosphatidylcholines and sphingomyelin relative to HDL3. Cholesterol condenses both HDL3 and LDL phospholipid monolayers but has a greater condensing effect on the LDL phospholipid monolayer. The pi-A isotherms for mixed monolayer of HDL3 phospholipid/cholesterol and LDL phospholipid/cholesterol at stoichiometries similar to those at the surfaces of lipoprotein particles suggest that the monolayer at the surface of the LDL particle is significantly more condensed than that at the surface of the HDL3 particle. The closer lateral packing in LDL is due to at least three factors: (1) the difference in phospholipid composition; (2) the higher unesterified cholesterol content in LDL; and (3) a stronger interaction between cholesterol and LDL phospholipids relative to HDL3 phospholipids. The influence of lipid molecular packing on the affinity of human apolipoprotein A-I (apo A-I) for HDL3 and LDL surface lipids was evaluated by monitoring the adsorption of 14C-methylated apo A-I to monolayers of these lipids spread at various initial surface pressures (pi i).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
M Nakagaki  K Tomita  T Handa 《Biochemistry》1985,24(17):4619-4624
16-(9-Anthroyloxy)palmitic acid (16-AP) is a bifunctional molecule with carboxyl and 9-anthroyloxy groups attached at both ends of the hydrocarbon chain. At the air-water interface, in a monolayer, the 16-AP molecule has horizontal and vertical orientations, depending on the surface pressure of the monolayer. The miscibilities of 16-AP with dimyristoylphosphatidylcholine (DMPC), cholesterol (CH), and fatty acids in mixed monolayers were evaluated in investigations of monolayer phase transitions. Lipid molecules with flexible hydrocarbon chains, i.e., DMPC and fatty acids, formed homogeneous mixed monolayers with horizontally oriented 16-AP. On the other hand, the rigid molecule, CH, could not accommodate the horizontally oriented 16-AP in a monolayer, and there was a phase separation from 16-AP. In biological and reconstituted membranes, preferential binding of phospholipid to the integral protein and exclusion of cholesterol in close vicinity of the membrane protein have been recognized. On the basis of this work, it can be expected that flexible lipids readily accommodate the rough hydrophobic surface of integral proteins and stabilize the structure of the protein, while rigid lipids such as cholesterol are removed from the immediate environment of the membrane protein, if the protein does not interact specifically with the rigid lipids.  相似文献   

13.
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.  相似文献   

14.
The binding of human high-density lipoprotein (HDL3), apolipoprotein A-I (apoA-I) and recombinants of apoA-I with cholesterol and/or dimyristoylphosphatidylcholine (DMPC) to the HDL receptor on isolated human small intestine epithelial cells was studied. ApoA-I competed for 125I-labelled HDL3 binding sites less effectively than HDL3, and a lower amount of 125I-labelled apoA-I than 125I-HDL3 was bound to cells. The apoA-I/DMPC recombinant competed for 125I-HDL3 binding sites nearly as well as HDL3, and 125I-apoA-I/DMPC recombinant bound to cells with at least the same efficiency as 125I-HDL3. The apoA-I/DMPC/cholesterol recombinant failed to compete for 125I-HDL3 binding sites, and the 125I-apoA-I/DMPC/cholesterol complex binding to cells was several-fold lower than that of other particles. All particles bound to cells with similar dissociation constants. Tetranitromethane-modified HDL3 failed to bind to high-affinity specific binding sites and compete with 125I-HDL3 for binding. The results obtained make it possible to assume that, while apoA-I may be a determinant of the HDL receptor, the lipid composition of the lipoprotein may affect its interaction with the receptor.  相似文献   

15.
Apolipoprotein E (apoE) is a ligand for members of the low-density lipoprotein receptor (LDLR) family. Lipid-free apoE is not recognized by LDLR, yet interaction with lipid confers receptor recognition properties. Although lipid interaction is known to induce a conformational change in apoE, it is not known if the lipid composition of the resulting complex influences binding. Using reconstituted lipoprotein particles of apoE3 N-terminal (NT) domain and dimyristoylphosphatidylcholine (DMPC), maximal LDLR binding was observed at DMPC:apoE3-NT ratios >2.5:1 (w/w). ApoE3-NT lipid particles prepared with egg sphingomyelin were functional as LDLR ligands while complexes formed with the anionic phospholipids dimyristoylphosphatidylglycerol or dimyristoylphosphatidylserine (DMPS) were not. In the case of apoE3-NT, lipid particles comprised of a mixture of DMPC and DMPS, a DMPS concentration dependent inhibition of LDLR binding activity was observed. Thus, in addition to affecting apoE conformational status, the lipid composition of ligand particles can modulate LDLR binding activity.  相似文献   

16.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilic glutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane.  相似文献   

18.
Influence of calcium, cholesterol, and unsaturation on lecithin monolayers   总被引:4,自引:0,他引:4  
Surface pressures and potentials of mixed monolayers of dicetyl phosphate-cholesterol, dipalmitoyl lecithin-cholesterol, egg lecithin-cholesterol, and phosphatidic acid-cholesterol were measured. The surface potential is shown to be a more reliable parameter for the study of interactions in monolayers than the surface pressure. Monolayers of dicetyl phosphate-cholesterol follow the additivity rule for area/molecule whereas lecithin-cholesterol monolayers deviate from it. The reverse is true for the additivity rule with regard to surface potential/molecule. Thus, the surface potential indicates that there is no interaction (or complex formation) between lecithin and cholesterol, but that there is ion-dipole interaction between dicetyl phosphate and cholesterol, as well as between phosphatidic acid and cholesterol. The apparent condensation of mixed monolayers of lecithin when cholesterol is added is explained by a consideration of molecular cavities or vacancies caused by thermal motion of the fatty acyl chains, the size of these cavities being influenced by the length and degree of saturation (especially the proportion of monounsaturation) of the fatty acyl chains and the extent of compression of the monolayer. The cholesterol molecules occupy these cavities and therefore cause no proportional increase in area/molecule in the mixed monolayers. Monolayers are liquefied by the presence of cholesterol as well as of unsaturated fatty acyl chains; in contrast, Ca(++)tends to solidify lecithin monolayers. The available evidence suggests that cholesterol can both impart fluidity to the monolayer and occupy the molecular cavities caused by the fatty acyl chains.  相似文献   

19.
PDC-109, the major protein of bovine seminal plasma, binds to sperm plasma membranes upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. The binding process is mediated primarily by the specific interaction of PDC-109 with choline-containing phospholipids. In the present study the kinetics and mechanism of the interaction of PDC-109 with phospholipid membranes were investigated by the surface plasmon resonance technique. Binding of PDC-109 to different phospholipid membranes containing 20% cholesterol (wt/wt) indicated that binding occurs by a single-step mechanism. The association rate constant (k(1)) for the binding of PDC-109 to dimyristoylphosphatidylcholine (DMPC) membranes containing cholesterol was estimated to be 5.7 x 10(5) M(-1) s(-1) at 20 degrees C, while the values of k(1) estimated at the same temperature for the binding to membranes of negatively charged phospholipids such as dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA) containing 20% cholesterol (wt/wt) were at least three orders of magnitude lower. The dissociation rate constant (k(-1)) for the DMPC/PDC-109 system was found to be 2.7 x 10(-2) s(-1) whereas the k(-1) values obtained with DMPG and DMPA was about three to four times higher. From the kinetic data, the association constant for the binding of PDC-109 to DMPC was estimated as 2.1 x 10(7) M(-1). The association constants for different phospholipids investigated decrease in the order: DMPC > DMPG > DMPA > DMPE. Thus the higher affinity of PDC-109 for choline phospholipids is reflected in a faster association rate constant and a slower dissociation rate constant for DMPC as compared to the other phospholipids. Binding of PDC-109 to dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine, which are also zwitterionic, was found to be very weak, clearly indicating that the charge on the lipid headgroup is not the determining factor for the binding. Analysis of the activation parameters indicates that the interaction of PDC-109 with DMPC membranes is favored by a strong entropic contribution, whereas negative entropic contribution is primarily responsible for the rather weak interaction of this protein with DMPA and DMPG.  相似文献   

20.
The effects of membrane composition on heme binding to large unilamellar vesicles were examined using 30 separate phospholipid mixtures. Although there was some variation, most lecithins with Tm values less than or equal to 20 degrees C showed overall equilibrium partition constants equal to approximately 5 x 10(5) and association and dissociation partition rate constants equal to approximately 3 x 10(6) s-1 and 7 s-1, respectively, for CO-heme binding at 30 degrees C. A sharp decrease in the association rate for CO-heme uptake was observed as the lipid vesicles changed from liquid-crystalline to the gel phase. The addition of dicetyl phosphate or dimyristoylphosphatidylglycerol, which are negatively charged at neutral pH, decreased the affinity of the vesicles for CO-heme. The association rate and equilibrium partition constants for CO-heme uptake in unsaturated lecithins were unaffected by cholesterol content at levels up to 40%/mol. The affinity of saturated dimyristoylphosphatidylcholine (DMPC) vesicles for CO-heme decreased with increasing cholesterol content at 30 degrees C. This effect appears to be related to the influence of cholesterol on the DMPC phase transition temperature (Tm) since at low temperatures (less than or equal to 20 degrees C) little CO-heme binds to vesicles composed of DMPC even in the absence of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号