首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interaction of (−)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (−)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca2+ influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50 = 3.86 ± 0.49 and 1.92 ± 0.48 μM, respectively, (b) binds to the [3H]TCP site with ∼13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [3H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6′ and 13′ in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9′ is the minimum structural component for (−)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (−)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants.  相似文献   

2.
Thirteen monoclonal antibodies (mAb) to the acetylcholine receptor (AChR) from Torpedo marmorata showed high avidity for the receptor but none exhibited binding to muscle AChR solubilised from seven other animal species. Five mAb and Fab monomer fragments prepared from two of them, inhibited alpha-bungarotoxin (alpha BuTx) binding to receptor by a maximum of 50%. In the presence of excess mAb the 125I-alpha BuTx bound could be precipitated by anti-IgG indicating that the mAb bound to only one of the two alpha BuTx binding sites on each AChR monomer. This site appeared to have a lower affinity for d-tubocurarine and decamethonium than the non-mAb site. Binding of five anti-site mAb was mutually competitive and four of them (AS2-AS5) were inhibited by other cholinergic ligands and influenced by four non-toxin binding site antibodies. One (AS1) bound within the toxin binding site yet outside the main neurotransmitter binding region. It is concluded that these five mAb distinguish between the two alpha BuTx binding sites on the Torpedo AChR, and bind only to the site which displays lower affinity for d-tubocurarine and other competitive ligands.  相似文献   

3.
《FEBS letters》1986,207(2):243-249
Regions of the Torpedo marmorata acetylcholine receptor (AChR) α-subunit involved in the binding of acetylcholine were probed with two different covalent ligands. The sulfhydryl-directed affinity reagent 4-(N-maleimido)phenyltrimethylammonium iodide labeled a single α-subunit cyanogen bromide fragment on the reduced AChR which was identified as α 179–207. The novel photoaffinity ligand p-(N,N-dimethylamino)-benzenediazonium fluoroborate, on the other hand, labeled three distinct α-chain cyanogen bromide fragments on the unmodified AChR in a carbamylcholine-protectable manner. The major radiolabeled species was purified and identified by sequence analysis as α 179–207. The acetylcholine-binding site on the native AChR may thus involve several distinct portions of the α-chain, with the region α 179–207 making a major contribution to the site.  相似文献   

4.
The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [3H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6′) and valine (position 13′) rings, and (c) inhibits [3H]TCP, [3H]ibogaine, and [3H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization.  相似文献   

5.
Using small-angle x-ray diffraction from centrifugally oriented acetylcholine receptor (AChR) enriched membranes coupled with anomalous scattering from terbium ions (Tb3+) titrated into presumed Ca2+ binding sites, we have mapped the distribution of Tb3+ perpendicular to the membrane plane using a heavy atom refinement algorithm. We have compared the distribution of Tb3+ in the closed resting state with that in the carbamylcholine-desensitized state. In the closed resting state we find 45 Tb3+ ions distributed in 10 narrow peaks perpendicular to the membrane plane. Applying the same refinement procedure to the data from carbamylcholine desensitized AChR we find 18 fewer Tb3+ ions in eight peaks, and slight rearrangements of Tb3+ density in the peaks near the ends of the AChR ion channel pore. These agonist dependent changes in the Tb3+ stoichiometry and distribution suggest a likely role for multivalent cations in stabilizing the different functional states of the AChR, and the changes in the Tb3+ distribution at the two ends of the pore suggest a potential role for multivalent cations in the gating of the ion channel.  相似文献   

6.
The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the hα3β4 AChR ion channel with relatively high affinity (Kd = 0.46 ± 0.06 μM), and ibogaine inhibits [3H]ibogaine binding to the desensitized hα3β4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the hα3β4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6′) and valine/phenylalanine (position 13′) rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.  相似文献   

7.
Abstract: The nicotinic acetylcholine receptor (AChR) exhibits at least four different conformational states varying in affinity for agonists such as acetylcholine (ACh). Photoaffinity labeling has been previously used to elucidate the topography of the AChR. However, to date, the photosensitive probes used to explore the cholinergic binding site photolabeled only closed or desensitized states of the receptor. To identify the structural modifications occurring at the ACh binding site on allosteric transition associated with receptor activation, we have investigated novel photoactivatable 4-diazocyclohexa-2,5-dienone derivatives as putative cholinergic agonists. Such compounds are fairly stable in the dark and generate highly reactive carbenic species on irradiation. In binding experiments using AChRs from Torpedo marmorata, these ligands had affinities for the ACh binding site in the micromolar range and did not interact with the noncompetitive blocker site (greater than millimolar affinity). Irreversible photoinactivation of ACh binding sites was obtained with the ligand 1b (up to 42% at 500 µM) in a protectable manner. In patch-clamp studies, 1b was shown to be a functional agonist of peripheral AChR in TE 671 cells, with the interesting property of exhibiting no or very little desensitization even at high concentrations.  相似文献   

8.
We investigated the molecular mechanisms and the binding site location for the fluorophor crystal violet (CrV), a noncompetitive antagonist of the nicotinic acetylcholine receptor (AChR). To this end, radiolabeled competition binding, fluorescence spectroscopy, Schild-type analysis, patch-clamp recordings, and molecular dynamics approaches were used. The results indicate that (i) CrV interacts with the desensitized Torpedo AChR with higher affinity than with the resting state at several temperatures (5-37 degrees C); (ii) CrV-induced inhibition of the phencyclidine (PCP) analogue [(3)H]thienylcyclohexylpiperidine binding to the desensitized or resting AChR is mediated by a steric mechanism; (iii) tetracaine inhibits CrV binding to the resting AChR, probably by a steric mechanism; (iv) barbiturates modulate CrV binding to the resting AChR by an allosteric mechanism; (v) CrV itself induces AChR desensitization; (vi) CrV decreases the peak of macroscopic currents by acting on the resting AChR but without affecting the desensitization rate from the open state; and (vii) two tertiary amino groups from CrV may bind to the alpha1-Glu(262) residues (located at position 20') in the resting state. We conclude that the CrV binding site overlaps the PCP locus in the resting and desensitized state. The noncompetitive action of CrV may be explained by an allosteric mechanism in which the binding of CrV to the extracellular mouth of the resting receptor leads to an inhibition of channel opening. Binding of CrV probably increases desensitization of the resting channel and stabilizes the desensitized state.  相似文献   

9.
Rapsyn is a protein on the cytoplasmic face of the postsynaptic membrane of skeletal muscle that is essential for clustering acetylcholine receptors (AChR). Here we show that transfection of rapsyn cDNA can restore AChR clustering function to muscle cells cultured from rapsyn deficient (KORAP) mice. KORAP myotubes displayed no AChR aggregates before or after treatment with neural agrin. After transfection with rapsyn expression plasmid, some KORAP myotubes expressed rapsyn at physiological levels. These formed large AChR-rapsyn clusters in response to agrin, just like wild-type myotubes. KORAP myotubes that overexpressed rapsyn formed only scattered AChR-rapsyn microaggregates, irrespective of agrin treatment. KORAP cells were then transfected with mutant forms of rapsyn. A deletion mutant lacking residues 16–254 formed rapsyn microaggregates, but failed to aggregate AChRs. Substitution mutation to the C-terminal serine phosphorylation site of rapsyn (M43D405,D406) did not impair the response to agrin, showing that differential phosphorylation of this site is unlikely to mediate agrin-induced clustering. The results indicate that rapsyn expression is essential for agrin-induced AChR clustering but that its overexpression inhibits this pathway. The approach of using rapsyn-deficient muscle cells opens the way for defining the role of rapsyn in agrin-induced AChR clustering.  相似文献   

10.
Alpha-conotoxins   总被引:2,自引:0,他引:2  
alpha-Conotoxins (alpha-CgTxs) are a family of Cys-enriched peptides found in several marine snails from the genus Conus. These small peptides behave pharmacologically as competitive antagonists of the nicotinic acetylcholine receptor (AChR). The data indicate that (1) alpha-CgTxs are able to discriminate between muscle- and neuronal-type AChRs and even among distinct AChR subtypes; (2) the binding sites for alpha-CgTxs are located, like other cholinergic ligands, at the interface of alpha and non-alpha subunits (gamma, delta, and epsilon for the muscle-type AChR, and beta for several neuronal-type AChRs); (3) some alpha-CgTxs differentiate the high- from the low-affinity binding site found on either alpha/non-alpha subunit interface; and that (4) specific residues in the cholinergic binding site are energetically coupled with their corresponding pairs in the toxin stabilizing the alpha-CgTx-AChR complex. The alpha-CgTxs have proven to be excellent probes for studying the structure and function of the AChR family.  相似文献   

11.
Song XZ  Andreeva IE  Pedersen SE 《Biochemistry》2003,42(14):4197-4207
Fluorescent energy transfer measurements of dansyl-C6-choline binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were used to determine binding characteristics of the alpha gamma and alpha delta binding sites. Equilibrium binding measurements show that the alpha gamma site has a lower fluorescence than the alpha delta site; the emission difference is due to differences in the intrinsic fluorescence of the bound fluorophores rather than differences in energy transfer at the two sites. Stopped-flow fluorescence kinetics showed that dissociation of dansyl-C6-choline from the AChR in the desensitized conformation occurs 5-10-fold faster from the alpha gamma site than from the alpha delta site. The dissociation rates are robust for distinct protein preparations, in the presence of noncompetitive antagonists, and over a broad range of ionic strengths. Equilibrium fluorescent binding measurements show that dansyl-C6-choline binds with higher affinity to the alpha delta site (K = 3 nM) than to the alpha gamma site (K = 9 nM) when the AChR is desensitized. Similar affinity differences were observed for acetylcholine itself. The distinct dissociation rates permit the extent of desensitization to be measured at each site during the time course of binding. This sequential mixing method of measuring the desensitized state population at each agonist site can be applied to study the mechanism of AChR activation and subsequent desensitization in detail.  相似文献   

12.
Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit hα1β1γδ AChR-induced Ca2+ influx with higher potencies than dizocilpine. The potency of fluoxetine is increased ~10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-3H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [3H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13′) and leucine (position 9′) rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20′, 21′, and 24′. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20′) rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization.  相似文献   

13.
The pharmacological properties of (±)-2-(N-tert-butylamino)-3′-iodo-4′-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca2+ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [3H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13′) and serine (position 6′) rings. However, an additional domain, between the outer (position 20′) and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel.  相似文献   

14.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

15.
Mechanistic pathways of metalloenzymes are controlled by the metal ion’s electronic and magnetic properties, which are tuned by the coordinated ligands. The functional advantage gained by incorporating cysteinates into the active site of non-heme iron enzymes such as superoxide reductase (SOR) is not entirely understood. Herein, we compare the structural and redox properties of a series of structurally-related thiolate, alkoxide, and amine-ligated Fe(II) complexes in order to determine how the thiolate influences properties critical to function. Thiolates are shown to reduce metal ion Lewis acidity relative to alkoxides and amines, and have a strong trans influence thereby helping to maintain an open coordination site. Comparison of the redox potentials of the structurally analogous compounds described herein shows that alkoxide ligands favor the higher-valent Fe3+ oxidation state, amine ligands favor the reduced Fe2+ oxidation state, and thiolates fall somewhere in between. These properties provide a functional advantage for substrate reducing enzymes in that they provide a site at the metal ion for substrate to bind, and a moderate potential that facilitates both substrate reduction and regeneration of the catalytically active reduced state. Redox potentials for structurally-related Co(II) complexes are shown to be cathodically-shifted relative to their Fe(II) analogues, making them ineffective reducing agents for substrates such as superoxide.  相似文献   

16.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

17.
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent.In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i  相似文献   

18.
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na+ ions and the countertransport of a K+ ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na+ ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K+ ion bound in three possible sites, we show that binding of the K+ ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K+ ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.  相似文献   

19.
Variants of β-galactosidase with Valine and with Glutamine replacing Glutamate-416 did not have a Mg2+ bound at the active site even at high Mg2+ concentrations (200 mM). They had low catalytic activity and the pH profiles were very different from those of the native enzyme. In addition, substrates, substrate analogs, transition state analogs and galactose bound very poorly. However, the orientation and conformation of the Mg2+ ligands (residues 416, 418, and 461) as well as the B-factors of these three side chains did not change significantly. The structures, conformations and B-factors of other active site residues were also essentially unchanged. These studies show that the active site Mg2+ is not necessary for structure and is, therefore, mainly important for modulating the chemistry and mediating the interactions between the active site components.  相似文献   

20.
Steroids and free fatty acids (FFA) are noncompetitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is purportedly located at the lipid-AChR interface, but their exact mechanism of action is still unknown. Here we studied the effect of structurally different FFA and steroids on the conformational equilibrium of the AChR in Torpedo californica receptor-rich membranes. We took advantage of the higher affinity of the fluorescent AChR open channel blocker, crystal violet, for the desensitized state than for the resting state. Increasing concentrations of steroids and FFA decreased the K(D) of crystal violet in the absence of agonist; however, only cis-unsaturated FFA caused an increase in K(D) in the presence of agonist. This latter effect was also observed with treatments that caused the opposite effects on membrane polarity, such as phospholipase A(2) treatment or temperature increase (decreasing or increasing membrane polarity, respectively). Quenching by spin-labeled fatty acids of pyrene-labeled AChR reconstituted into model membranes, with the label located at the gammaM4 transmembrane segment, disclosed the occurrence of conformational changes induced by steroids and cis-unsaturated FFA. The present work is a step forward in understanding the mechanism of action of this type of molecules, suggesting that the direct contact between exogenous lipids and the AChR transmembrane segments removes the AChR from its resting state and that membrane polarity modulates the AChR activation equilibrium by an independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号