首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with beta-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

2.
Ying Yin 《BBA》2009,1787(7):913-919
Previous studies indicate that the three-subunit cytochrome bc1 core complex of Rhodobacter sphaeroides contains a fraction of the electron transfer activity of the wild-type enzyme. Addition of subunit IV to the core complex increases electron transfer activity to the same level as that of the wild-type complex. This activity increase may result from subunit IV preventing electron leakage, from the low potential electron transfer chain, and reaction with molecular oxygen, producing superoxide anion. This suggestion is based on the following observations: (1) the extent of cytochrome b reduction in the three-subunit core complex, by ubiquinol, in the presence of antimycin A, never reaches the same level as that in the wild-type complex; (2) the core complex produces 4 times as much superoxide anion as does the wild-type complex; and (3) when the core complex is reconstituted with subunit IVs having varying reconstitutive activities, the activity increase in reconstituted complexes correlates with superoxide production decrease and extent of cytochrome b reduction increase.  相似文献   

3.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

4.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

5.
6.
The cytochrome (cyt) bc1 complex (ubiquinol: cytochrome c oxidoreductase) is the central enzyme of mitochondrial and bacterial electron-transport chains. It is rich in prosthetic groups, many of which have significant but overlapping absorption bands in the visible spectrum. The kinetics of the cytochrome components of the bc1 complex are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. This difference-wavelength (DW) approach has been used extensively in the development and testing of the Q-cycle mechanism of the bc1 complex in Rhodobacter sphaeroides chromatophores. However, the DW approach does not fully compensate for spectral interference from other components, which can significantly distort both amplitudes and kinetics. Mechanistic elaboration of cyt bc1 turnover requires an approach that overcomes this limitation. Here, we compare the traditional DW approach to a least squares (LS) analysis of electron transport, based on newly determined difference spectra of all individual components of cyclic electron transport in chromatophores. Multiple sets of kinetic traces, measured at different wavelengths in the absence and presence of specific inhibitors, were analyzed by both LS and DW approaches. Comparison of the two methods showed that the DW approach did not adequately correct for the spectral overlap among the components, and was generally unreliable when amplitude changes for a component of interest were small. In particular, it was unable to correct for extraneous contributions to the amplitudes and kinetics of cyt bL. From LS analysis of the chromophoric components (RC, ctot, bH and bL), we show that while the Q-cycle model remains firmly grounded, quantitative reevaluation of rates, amplitudes, delays, etc., of individual components is necessary. We conclude that further exploration of mechanisms of the bc1 complex, will require LS deconvolution for reliable measurement of the kinetics of individual components of the complex in situ.  相似文献   

7.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

8.
Shih-Chia Tso 《BBA》2006,1757(12):1561-1567
A region of subunit IV comprising residues 77-85 is identified as essential for interaction with the core complex to restore the bc1 activity (reconstitutive activity). Recombinant subunit IV mutants with single or multiple alanine substitution at this region were generated and characterized to identify the essential amino acid residues. Residues 81-84, with sequence of YRYR, are required for reconstitutive activity of subunit IV, because a mutant with these four residues substituted with alanine has little activity, while a mutant with alanine substitution at residues 77-80 and 85 have the same reconstitutive activity as that of the wild-type IV. The positively charged group at R-82 and R-84 and both the hydroxyl group and aromatic group at Y-81 and Y-83 are essential. The interactions between these four residues of subunit IV and residues of core subunits are also responsible for the stability of the complex. However, these interactions are not essential for the incorporation of subunit IV into the bc1 complex.  相似文献   

9.
Electronic connection between Qo and Qi quinone catalytic sites of dimeric cytochrome bc1 is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter remains unclear. Here, using a series of mutated hybrid cytochrome bc1-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.  相似文献   

10.
The kinetics of the cytochrome (cyt) components of the bc1 complex (ubiquinol: cytochrome c oxidoreductase, Complex III) are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. However, this difference-wavelength (DW) approach is of limited accuracy in the separation of absorbance changes of components with overlapping spectral bands. To resolve the kinetics of individual components in Rhodobacter sphaeroides chromatophores, we have tested a simplified version of a least squares (LS) analysis, based on measurement at a minimal number of different wavelengths. The success of the simplified LS analysis depended significantly on the wavelengths used in the set. The “traditional” set of 6 wavelengths (542, 551, 561, 566, 569 and 575 nm), normally used in the DW approach to characterize kinetics of cyt ctot (cyt c1 + cyt c2), cyt bL, cyt bH, and P870 in chromatophores, could also be used to determine these components via the simplified LS analysis, with improved resolution of the individual components. However, this set is not sufficient when information about cyts c1 and c2 is needed. We identified multiple alternative sets of 5 and 6 wavelengths that could be used to determine the kinetics of all 5 components (P870 and cyts c1, c2, bL, and bH) simultaneously, with an accuracy comparable to that of the LS analysis based on a full set of wavelengths (1 nm intervals). We conclude that a simplified version of LS deconvolution based on a small number of carefully selected wavelengths provides a robust and significant improvement over the traditional DW approach, since it accounts for spectral interference of the different components, and uses fewer measurements when information about all five individual components is needed. Using the simplified and complete LS analyses, we measured the simultaneous kinetics of all cytochrome components of bc1 complex in the absence and presence of specific inhibitors and found that they correspond well to those expected from the modified Q-cycle. This is the first study in which the kinetics of all cytochrome and reaction center components of the bc1 complex functioning in situ have been measured simultaneously, with full deconvolution over an extended time range.  相似文献   

11.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

12.
The yeast cytochrome bc1 complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc1 complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc1 assembly and the formation of a functionally inactive bc1 core structure of about 500-kDa. This immature bc1 core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc1 core structure leading to the formation of the functional homodimeric bc1 complex. Following Bcs1p expression, the mature bc1 complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc1 complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc1 complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc1 core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc1 complex and gives new insights into the molecular mechanisms involved in the last steps of bc1 assembly.  相似文献   

13.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

14.
Specific protein-lipid interactions have been identified in X-ray structures of membrane proteins. The role of specifically bound lipid molecules in protein function remains elusive. In the current study, we investigated how phospholipids influence catalytic, spectral and electrochemical properties of the yeast respiratory cytochrome bc1 complex and how disruption of a specific cardiolipin binding site in cytochrome c1 alters respiratory supercomplex formation in mitochondrial membranes. Purified yeast cytochrome bc1 complex was treated with phospholipase A2. The lipid-depleted enzyme was stable but nearly catalytically inactive. The absorption maxima of the reduced b-hemes were blue-shifted. The midpoint potentials of the b-hemes of the delipidated complex were shifted from − 52 to − 82 mV (heme bL) and from + 113 to − 2 mV (heme bH). These alterations could be reversed by reconstitution of the delipidated enzyme with a mixture of asolectin and cardiolipin, whereas addition of the single components could not reverse the alterations. We further analyzed the role of a specific cardiolipin binding site (CLi) in supercomplex formation by site-directed mutagenesis and BN-PAGE. The results suggested that cardiolipin stabilizes respiratory supercomplex formation by neutralizing the charges of lysine residues in the vicinity of the presumed interaction domain between cytochrome bc1 complex and cytochrome c oxidase. Overall, the study supports the idea, that enzyme-bound phospholipids can play an important role in the regulation of protein function and protein-protein interaction.  相似文献   

15.
Cen X  Yu L  Yu CA 《FEBS letters》2008,582(4):523-526
The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex.  相似文献   

16.
Astrid R. Klingen  Carola Hunte 《BBA》2007,1767(3):204-221
Cytochrome bc1 is a major component of biological energy conversion that exploits an energetically favourable redox reaction to generate a transmembrane proton gradient. Since the mechanistic details of the coupling of redox and protonation reactions in the active sites are largely unresolved, we have identified residues that undergo redox-linked protonation state changes. Structure-based Poisson-Boltzmann/Monte Carlo titration calculations have been performed for completely reduced and completely oxidised cytochrome bc1. Different crystallographically observed conformations of Glu272 and surrounding residues of the cytochrome b subunit in cytochrome bc1 from Saccharomyces cerevisiae have been considered in the calculations. Coenzyme Q (CoQ) has been modelled into the CoQ oxidation site (Qo-site). Our results indicate that both conformational and protonation state changes of Glu272 of cytochrome b may contribute to the postulated gating of CoQ oxidation. The Rieske iron-sulphur cluster could be shown to undergo redox-linked protonation state changes of its histidine ligands in the structural context of the CoQ-bound Qo-site. The proton acceptor role of the CoQ ligands in the CoQ reduction site (Qi-site) is supported by our results. A modified path for proton uptake towards the Qi-site features a cluster of conserved lysine residues in the cytochrome b (Lys228) and cytochrome c1 subunits (Lys288, Lys289, Lys296). The cardiolipin molecule bound close to the Qi-site stabilises protons in this cluster of lysine residues.  相似文献   

17.
The availability of the three dimensional structure of mitochondrial enzyme, obtained by X-ray crystallography, allowed a significant progress in the understanding of the structure-function relation of the cytochrome bc1 complex. Most of the structural information obtained has been confirmed by molecular genetic studies of the bacterial complex. Despite its small size and simple subunit composition, high quality crystals of the bacterial complex have been difficult to obtain and so far, only low resolution structural data has been reported. The low quality crystal observed is likely associated in part with the low activity and stability of the purified complex. To mitigate this problem, we recently engineered a mutant [S287R(cytb)/V135S(ISP)] from Rhodobacter sphaeroides to produce a highly active and more stable cytochrome bc1 complex. The purified mutant complex shows a 40% increase in electron transfer activity as compared to that of the wild type enzyme. Differential scanning calorimetric study shows that the mutant is more stable than the wild type complex as indicated by a 4.3 °C increase in the thermo-denaturation temperature. Crystals formed from this mutant complex, in the presence of stigmatellin, diffract X-rays up to 2.9 Å resolution.  相似文献   

18.
A rapid separation of the ten nuclearly-encoded subunits of mitochondrial cytochrome c oxidase, and ten out of the eleven subunits of cytochrome bc1, was achieved using a short, 50 mm C18-reversed-phase column. The short column decreased the elution time 4–7 fold while maintaining the same resolution quality. Elution was similar to a previously published protocol, i.e., a water/acetonitrile elution gradient containing trifluoroacetic acid. Isolated subunits were identified by MALDI-TOF. The rapidity of the described method makes it extremely useful for determining the subunit composition of isolated mitochondrial complexes. The method can be used for both analytical and micro-preparative purposes.  相似文献   

19.
Ruth Hielscher  Carola Hunte  Petra Hellwig 《BBA》2009,1787(6):617-7786
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc1 complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pKa values for cardiolipin molecule have been observed at 4.7 ± 0.3 and 7.9 ± 1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc1 complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A2. Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm− 1 have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme bH and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.  相似文献   

20.
Armen Y. Mulkidjanian 《BBA》2005,1709(1):5-34
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a “hub” in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique “bifurcated” reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号