首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural complexity of the cell membrane makes analysis of membrane processes in living cells, as compared to model membrane systems, highly challenging. Living cells decorated with surface-attached colorimetric/fluorescent polydiacetylene patches might constitute an effective platform for analysis and visualization of membrane processes in situ. This work examines the biological and chemical consequences of plasma membrane labeling of promyelocytic leukemia cells with polydiacetylene. We show that the extent of fusion between incubated lipid/diacetylene vesicles and the plasma membrane is closely dependent upon the lipid composition of both vesicles and cell membrane. In particular, we find that cholesterol presence increased bilayer fusion between the chromatic vesicles and the plasma membrane, suggesting that membrane organization plays a significant role in the fusion process. Spectroscopic data and physiological assays show that decorating the cell membrane with the lipid/diacetylene patches reduces the overall lateral diffusion within the membrane bilayer, however polydiacetylene labeling does not adversely affect important cellular metabolic pathways. Overall, the experimental data indicate that the viability and physiological integrity of the surface-engineered cells are retained, making possible utilization of the platform for studying membrane processes in living cells. We demonstrate the use of the polydiacetylene-labeled cells for visualizing and discriminating among different membrane interaction mechanisms of pharmaceutical compounds.  相似文献   

2.
We have developed a novel α-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 °C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.  相似文献   

3.
Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these ‘ladderane’ lipids, we have isolated a ladderane phosphatidylcholine and a mixed ladderane phosphatidylethanolamine/phosphatidylglycerol lipid fraction and reconstituted these lipids in different membrane environments. Langmuir monolayer experiments demonstrated that the purified ladderane phospholipids form fluid films with a relatively high lipid packing density. Fluid-like behavior was also observed for ladderane lipids in bilayer systems as monitored by cryo-electron microscopy on large unilamellar vesicles (LUVs) and epi-fluorescence microscopy on giant unilamellar vesicles (GUVs). Analysis of the LUVs by fluorescence depolarization revealed a relatively high acyl chain ordering in the hydrophobic region of the ladderane phospholipids. Micropipette aspiration experiments were applied to study the mechanical properties of ladderane containing lipid bilayers and showed a relatively high apparent area compressibility modulus for ladderane containing GUVs, thereby confirming the fluid and acyl chain ordered characteristics of these lipids. The biophysical findings in this study support the previous postulation that dense membranes in anammox cells protect these microbes against the highly toxic and volatile anammox metabolites.  相似文献   

4.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

5.
In this study, we have examined the membrane properties and sterol interactions of phosphatidyl alcohols varying in the size of the alcohol head group coupled to the sn-3-linked phosphate. Phosphatidyl alcohols of interest were dipalmitoyl derivatives with methanol (DPPMe), ethanol (DPPEt), propanol (DPPPr), or butanol (DPPBu) head groups. The Phosphatidyl alcohols are biologically relevant, because they can be formed in membranes by the phospholipase D reaction in the presence of alcohol. The melting behavior of pure phosphatidyl alcohols and mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or cholesterol was assessed using high sensitivity differential scanning calorimetry (DSC). DPPMe had the highest melting temperature (∼ 49 °C), whereas the other phosphatidyl alcohols had similar melting temperatures as DPPC (∼ 40-41 °C). All phosphatidyl alcohols, except DPPMe, also showed good miscibility with DPPC. The effects of cholesterol on the melting behavior and membrane order in multilamellar bilayer vesicles were assessed using steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DSC. The ordering effect of cholesterol in the fluid phase was lower for all phosphatidyl alcohols as compared to DPPC and decreased with increasing head group size. The formation of ordered domains containing the phosphatidyl alcohols in complex bilayer membranes was determined using fluorescence quenching of DPH or the sterol analogue cholesta-5,7,(11)-trien-3-beta-ol (CTL). The phosphatidyl alcohols did not appear to form sterol-enriched ordered domains, whereas DPPMe, DPPEt appeared to form ordered domains in the temperature window examined (10-50 °C). The partitioning of CTL into bilayer membranes containing phosphatidyl alcohols was to a small extent increased for DPPMe and DPPEt, but in general, sterol interactions were weak or unfavorable for the phosphatidyl alcohols. Our results show that the biophysical and sterol interacting properties of phosphatidyl alcohols, having identical acyl chain structures, are markedly dependent on the size of the head group.  相似文献   

6.
The membrane location of two fragments in two different K+-channels, the KvAP (from Aeropyrum pernix) and the HsapBK (human) corresponding to the putative “paddle” domains, has been investigated by CD, fluorescence and NMR spectroscopy. Both domains interact with q = 0.5 phospholipid bicelles, DHPC micelles and with POPC vesicles. CD spectra demonstrate that both peptides become largely helical in the presence of phospholipid bicelles. Fluorescence quenching studies using soluble acrylamide or lipid-attached doxyl-groups show that the arginine-rich domains are located within the bilayered region in phospholipid bicelles. Nuclear magnetic relaxation parameters, T1 and 13C-1H NOE, for DMPC in DMPC/DHPC bicelles and for DHPC in micelles showed that the lipid acyl chains in the bicelles become less flexible in the presence of either of the fragments. An even more pronounced effect is seen on the glycerol carbons. 2H NMR spectra of magnetically aligned bicelles showed that the peptide derived from KvAP had no or little effect on bilayer order, while the peptide derived from HsapBK had the effect of lowering the order of the bilayer. The present study demonstrates that the fragments derived from the full-length proteins interact with the bilayered interior of model membranes, and that they affect both the local mobility and lipid order of model membrane systems.  相似文献   

7.
The composition of the lipid bilayer is increasingly being recognised as important for the regulation of integral membrane protein folding and function, both in vivo and in vitro. The folding of only a few membrane proteins, however, has been characterised in different lipid environments. We have refolded the small multidrug transporter EmrE in vitro from a denatured state to a functional protein and monitored the influence of lipids on the folding process. EmrE is part of a multidrug resistance protein family that is highly conserved amongst bacteria and is responsible for bacterial resistance to toxic substances. We find that the secondary structure of EmrE is very stable and only small amounts are denatured even in the presence of unusually high denaturant concentrations involving a combination of 10 M urea and 5% SDS. Substrate binding by EmrE is recovered after refolding this denatured protein into dodecylmaltoside detergent micelles or into lipid vesicles. The yield of refolded EmrE decreases with lipid bilayer compositional changes that increase the lateral chain pressure within the bilayer, whilst conversely, the apparent rate of folding seems to increase. These results add further weight to the hypothesis that an increased lateral chain pressure hinders protein insertion across the bilayer. Once the protein is inserted, however, the greater pressure on the transmembrane helices accelerates correct packing and final folding. This work augments the relatively small number of biophysical folding studies in vitro on helical membrane proteins.  相似文献   

8.
Cannabinoids are compounds that can modulate neuronal functions and immune responses via their activity at the CB1 receptor. We used 2H NMR order parameters and relaxation rate determination to delineate the behavior of magnetically aligned phospholipid bilayers in the presence of several structurally distinct cannabinoid ligands. THC (Δ9-Tetrahydrocannabinol) and WIN-55,212-2 were found to lower the phase transition temperature of the DMPC and to destabilize their acyl chains leading to a lower average SCD (≈ 0.13), while methanandamide and CP-55,940 exhibited unusual properties within the lipid bilayer resulting in a greater average SCD (≈ 0.14) at the top of the phospholipid upper chain. The CB1 antagonist AM281 had average SCD values that were higher than the pure DMPC lipids, indicating a stabilization of the lipid bilayer. R1Z versus |SCD|2 plots indicated that the membrane fluidity is increased in the presence of THC and WIN-55,212-2. The interaction of CP-55,940 with a variety of zwitterionic and charged membranes was also assessed. The unusual effect of CP-55,940 was present only in bicelles composed of DMPC. These studies strongly suggest that cannabinoid action on the membrane depends upon membrane composition as well as the structure of the cannabinoid ligands.  相似文献   

9.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

10.
Saposins A, B, C and D are soluble, non-enzymatic proteins that interact with lysosomal membranes to activate the breakdown and transfer of glycosphingolipids. The mechanisms of hydrolase activation and lipid transfer by saposins remain unknown. We have used in situ atomic force microscopy (AFM) with simultaneous confocal fluorescence microscopy to investigate the interactions of saposins with lipid membranes. AFM images of the effect of saposins A, B and C on supported lipid bilayers showed a time and concentration-dependent nucleated spread of membrane transformation. Saposin B produced deep gaps that ultimately filled with granular material, while saposins A and C lead to localized areas of membrane that were reduced in height by approximately 1.5 nm. Fluorescence-labeled saposin C co-localized with the transformed areas of the bilayer, indicating stable binding to the membrane. Fluorescence resonance energy transfer confirmed a direct interaction between saposin C and lipid. Under certain conditions of membrane lipid composition and saposin concentration, extensive bilayer lipid removal was observed. We propose a multi-step mechanism that integrates the structural features and amphipathic properties of the saposin proteins.  相似文献   

11.
The work presented here describes a new and simple method based on site-directed fluorescence labeling using the BADAN label that permits the examination of protein-lipid interactions in great detail. We applied this technique to a membrane-embedded, mainly α-helical reference protein, the M13 major coat protein. Using a high-throughput approach, 40 site-specific cysteine mutants were prepared of the 50-residues long protein. The steady-state fluorescence spectra were analyzed using a three-component spectral model that enabled the separation of Stokes shift contributions from water and internal label dynamics, and protein topology. We found that most of the fluorescence originated from BADAN labels that were hydrogen-bonded to water molecules even within the hydrophobic core of the membrane. Our spectral decomposition method revealed the embedment and topology of the labeled protein in the membrane bilayer under various conditions of headgroup charge and lipid chain length, as well as key characteristics of the membrane such as hydration level and local polarity, provided by the local dielectric constant.  相似文献   

12.
The pressure-dependent diffusion and partitioning of single lipid fluorophores in DMPC and DPPC monolayers were investigated with the use of a custom-made monolayer trough mounted on a combined fluorescence correlation spectroscopy (FCS) and wide-field microscopy setup. It is shown that lipid diffusion, which is essential for the function of biological membranes, is heavily influenced by the lateral pressure and phase of the lipid structure. Both of these may change dynamically during, e.g., protein adsorption and desorption processes. Using FCS, we measured lipid diffusion coefficients over a wide range of lateral pressures in DMPC monolayers and fitted them to a free-area model as well as the direct experimental observable mean molecular area. FCS measurements on DPPC monolayers were also performed below the onset of the phase transition (Π < 5 mN/m). At higher pressures, FCS was not applicable for measuring diffusion coefficients in DPPC monolayers. Single-molecule fluorescence microscopy and differential scanning calorimetry clearly showed that this was due to heterogeneous partitioning of the lipid fluorophores in condensed phases. The results were compared with dye partitioning in giant lipid vesicles. These findings are significant in relation to the application of lipid fluorophores to study diffusion in both model systems and biological systems.  相似文献   

13.
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are characterized by differential scanning calorimetry, fluorescence, circular dichroism, and NMR experiments. An anilinonaphthalene-8-sulfonic acid uptake assay reveals two distinct modes of Escherichia coli outer membrane perturbation elicited by LL37 and LL7-27. The circular dichroism results show that conformational transitions are mediated by lipid-specific interactions in the case of LL7-27, unlike LL37. It folds into an α-helical conformation upon binding to anionic (but not zwitterionic) vesicles, and also does not induce dye leakage from zwitterionic lipid vesicles. Differential scanning calorimetry thermograms show that LL7-27 is completely integrated with DMPC/DMPG (3:1) liposomes, but induces peptide-rich and peptide-poor domains in DMPC liposomes. 15N NMR experiments on mechanically aligned lipid bilayers suggest that, like the full-length peptide LL37, the peptide LL7-27 is oriented close to the bilayer surface, indicating a carpet-type mechanism of action for the peptide. 31P NMR spectra obtained from POPC/POPG (3:1) bilayers containing LL7-27 show substantial disruption of the lipid bilayer structure and agree with the peptide's ability to induce dye leakage from POPC/POPG (3:1) vesicles. Cholesterol is shown to suppress peptide-induced disorder in the lipid bilayer structure. These results explain the susceptibility of bacteria and the resistance of erythrocytes to LL7-27, and may have implications for the design of membrane-selective therapeutic agents.  相似文献   

14.
Tau is a microtubule associated protein whose aggregation is implicated in a number of neurodegenerative diseases. We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the β-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.  相似文献   

15.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   

16.
It is essential to understand the role of cardiolipin (CL) in mitochondrial membrane organization given that changes in CL levels contribute to mitochondrial dysfunction in type II diabetes, ischemia–reperfusion injury, heart failure, breast cancer, and aging. Specifically, there are contradictory data on how CL influences the molecular packing of membrane phospholipids. Therefore, we determined how increasing levels of heart CL impacted molecular packing in large unilamellar vesicles, modeling heterogeneous lipid mixtures found within the mitochondrial inner membrane, using merocyanine (MC540) fluorescence. We broadly categorized lipid vesicles of equal mass as loosely packed, intermediate, and highly packed based on peak MC540 fluorescence intensity. CL had opposite effects on loosely versus highly packed vesicles. Exposure of loosely packed vesicles to increasing levels of CL dose-dependently increased membrane packing. In contrast, increasing amounts of CL in highly packed vesicles decreased the packing in a dose-dependent manner. In vesicles that were categorized as intermediate packing, CL had either no effect or decreased packing at select doses in a dose-independent manner. Altogether, the results aid in resolving some of the discrepant data by demonstrating that CL displays differential effects on membrane packing depending on the composition of the lipid environment. This has implications for mitochondrial protein activity in response to changing CL levels in microdomains of varying composition.  相似文献   

17.
Eosinophil cationic protein (ECP/RNase 3) and the skin derived ribonuclease 7 (RNase 7) are members of the RNase A superfamily. RNase 3 is mainly expressed in eosinophils whereas RNase 7 is primarily secreted by keratinocytes. Both proteins present a broad-spectrum antimicrobial activity and their bactericidal mechanism is dependent on their membrane destabilizing capacities. Using phospholipid vesicles as membrane models, we have characterized the protein membrane association process. Confocal microscopy experiments using giant unilamellar vesicles illustrate the morphological changes of the liposome population. By labelling both lipid bilayers and proteins we have monitored the kinetic of the process. The differential protein ability to release the liposome aqueous content was evaluated together with the micellation and aggregation processes. A distinct morphology of the protein/lipid aggregates was visualized by transmission electron microscopy and the proteins overall secondary structure in a lipid microenvironment was assessed by FTIR. Interestingly, for both RNases the membrane interaction events take place in a different behaviour and timing: RNase 3 triggers first the vesicle aggregation, while RNase 7 induces leakage well before the aggregation step. Their distinct mechanism of action at the membrane level may reflect different in vivo antipathogen functions.  相似文献   

18.
We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.  相似文献   

19.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of β-amyloid (Aβ) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Aβ. As a model, we have examined the interaction of Aβ(1−42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Aβ to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Aβ and Aβ-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Aβ addition and is maintained for over 24 h. By contrast, Aβ is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Aβ on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Aβ activity in vivo.  相似文献   

20.
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine ∼ 6:4 POPC:cholesterol < POPC ∼ dioleoylphosphatidylcholine (DOPC) < 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DOPG) ≤ 1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] sodium salt (DOPS), indicating that the anionic lipids DOPG and DOPS most strongly stabilized the TM configuration. TM stabilization was near maximal at 20-30 mol% anionic lipid, which are physiologically relevant values. TM stabilization by anionic lipid was observed for hydrophobic sequences with a diverse set of sequences (including polyAla), diverse lengths (from 12 to 22 residues), and various cationic flanking residues (H, R, or K), but not when the flanking residues were uncharged. TM stabilization by anionic lipid was also dependent on the number of cationic residues flanking the hydrophobic sequence, but was still significant with only one cationic residue flanking each end of the peptide. These observations are consistent with TM-stabilizing effects being electrostatic in origin. However, Trp located more deeply in DOPS vesicles relative to DOPG vesicles, and peptides in DOPS vesicles showed increased helix formation relative to DOPG and all other lipid compositions. These observations fit a model in which DOPS anchors flanking residues near the membrane surface more strongly than does DOPG and/or increases the stability of the TM state to a greater degree than DOPG. We conclude that anionic lipids can have significant and headgroup structure-specific effects upon membrane protein topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号