首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron transfer from wild-type spinach plastocyanin (Pc) to photosystem 1 has been studied by flash-induced absorption changes at 830 nm. The decay kinetics of photo-oxidized P700 are drastically slower in the presence of Ag(I)-substituted Pc, while addition of Zn(II)-substituted Pc has a weaker effect. The metal-substituted forms of Pc act as competitive inhibitors of the reaction between normal, Cu-containing, Pc and P700. The inhibition constants obtained from an analysis of the kinetic data were 30 and 410 muM for Ag(I)- and Zn(II)-substituted Pc, respectively. When the Gly8Asp mutant form of Pc was used instead of the wild-type form, the corresponding values were found to be 77 and 442 muM. If the Ag- and Zn-derivatives can be considered as structural mimics of reduced and oxidized CuPc, respectively, our results imply that there is a redox-induced decrease in the affinity between Pc and photosystem 1 that follows the electron donation to P700. Our data also imply that the Gly8Asp mutation can diminish the magnitude of this change. The findings reported here are consistent with a reaction mechanism where the electron transfer in the complex between Pc and photosystem 1 is assumed to be reversible.  相似文献   

2.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

3.
An electrometric technique was used to investigate electron transfer between spinach plastocyanin (Pc) and photooxidized primary electron donor P700 in photosystem I (PS I) complexes from the cyanobacterium Synechocystis sp. PCC 6803. In the presence of Pc, the fast unresolvable kinetic phase of membrane potential generation related to electron transfer between P700 and the terminal iron–sulfur acceptor FB was followed by additional electrogenic phases in the microsecond and millisecond time scales, which contribute approximately 20% to the overall electrogenicity. These phases are attributed to the vectorial electron transfer from Pc to the protein-embedded chlorophyll dimer P700+ within the PsaA/PsaB heterodimer. The observed rate constant of the millisecond kinetic phase exhibited a saturation profile at increasing Pc concentration, suggesting the formation of a transient complex between Pc and PS I with the dissociation constant Kd of about 80 μM. A small but detectable fast electrogenic phase was observed at high Pc concentration. The rate constant of this phase was independent of Pc concentration, indicating that it is related to a first-order process.  相似文献   

4.
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the ‘P700 oxidation capacity’ of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast–mitochondrion interactions able to overcome lesions in energy metabolism.  相似文献   

5.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

6.
We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion for complex selection was the distance between the copper ion of Pc and the P700 chlorophyll special pair. Additionally, the unique tyrosine residue (Tyr(12)) of the hydrophobic docking surface of Prochlorothrix hollandica Pc yields a specific interaction with the lumenal surface of PSI, thus providing the second constraint for the complex. The structure that corresponded best to our criteria was obtained by the GRAMM algorithm. In this structure, the solvent-exposed histidine that coordinates copper in Pc is at the van der Waals distance from the pair of stacked tryptophans that separate the chlorophylls from the solvent, yielding the shortest possible metal-to-metal distance. The unique tyrosine on the surface of the Prochlorothrix Pc hydrophobic patch also participates in a hydrogen bond with the conserved Asn(633) of the PSI PsaB polypeptide (numbering from the Synechococcus elongatus crystal structure). Free energy calculations for complex formation with wild-type Pc, as well as the hydrophobic patch Tyr(12)Gly and Pro(14)Leu Pc mutants, were carried out using a molecular mechanics Poisson-Boltzman, surface area approach (MM/PBSA). The results are in reasonable agreement with our experimental studies, suggesting that the obtained structure can serve as an adequate model for P. hollandica Pc-PSI complex that can be extended for the study of other cyanobacterial Pc/PSI reaction pairs.  相似文献   

7.
Electron transfer from plastocyanin to photosystem I.   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.  相似文献   

8.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

9.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

10.
The dependence of the P(700)(+)/P(700) midpoint potential on kinetics of reduction of P(700)(+) in vivo has been examined in a series of site-directed mutants of Chlamydomonas reinhardtii in which the histidyl axial ligand to the Mg(2+) of the P(700) chlorophyll a has been changed to several different amino acids. In wild-type photosystem I, the potential of P(700)(+)/P(700) is 447 mV and the in vivo half-time of P(700)(+) reduction by its natural donor, plastocyanin, is 4 micros. Substitution of the axial histidine ligand with cysteine increases the potential of P(700)(+)/P(700) to 583 mV and changes the rate of P(700)(+) reduction to 0.8 micros. Mutants with a range of potentials between 447 and 583 mV show a strong correlation of the P(700)(+)/P(700) potential to the rate of reduction of P(700)(+) by plastocyanin. There is also an increase in the rate of photosystem I-mediated electron transfer from the artificial electron donor DCPIP to methyl viologen in thylakoid membranes. The results indicate that the overall rate constant of P(700)(+) reduction is determined by the rate of electron transfer between the copper and P(700)(+) and confirmed that in vivo there is a preformed complex between plastocyanin and photosystem I. Using approximations of the Marcus electron transfer theory, it is possible to estimate that the distance between the copper of plastocyanin and P(700)(+) is approximately 15 A. On the basis of this distance, the plastocyanin docking site should lie in a 10 A hollow formed by the lumenal exposed loops between transmembrane helices i and j of PsaA and PsaB.  相似文献   

11.
Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 °C and the Q band was upshifted by 5 °C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700+ was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.  相似文献   

12.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

13.
Recent studies of chloroplast architecture have emphasized the segregation of photosystem I and photosystem II in different regions of the lamellar membrane. The apparent localization of photosystem II reaction centers in regions of membrane appression and of photosystem I reaction centers in regions exposed to the chloroplast stroma has focused attention on the intervening electron carriers, carriers which must be present to catalyze electron transfer between such spatially separated reaction sites. Information regarding the stoichiometries of these intermediate carriers is essential to an understanding of the processes that work together to establish the mechanism and to determine the rate of the overall process. We have reinvestigated the numbers of photosystem I and photosystem II reaction centers, the numbers of intervening cytochrome b6/f complexes, and the numbers of molecules of the relatively mobile electron carriers plastoquinone and plastocyanin that are actively involved in electron transfer. Our investigations were based on a new experimental technique made possible by the use of a modified indophenol dye, methyl purple, the reduction of which provides a particularly sensitive and accurate measure of electron transfer. Using this dye, which accepts electrons exclusively from photosystem I, it was possible to drain electrons from each of the carriers. Thus, by manipulation of the redox condition of the various carriers and through the use of specific inhibitors we could measure the electron storage capacity of each carrier in turn. We conclude that the ratio of photosystem I reaction centers to cytochrome b6/f complexes to photosystem II reaction centers is very nearly 1:1:1. The pool of rapid donors of electrons to P700 includes not only the 2 reducing equivalents stored in the cytochrome b6/f complex but also those stored in slightly more than 2 molecules of plastocyanin per P700. More slowly available are the electrons from about 6 plastoquinol molecules per P700.  相似文献   

14.
15.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0–4.62 μM Cd2+. By evaluating the half time of fluorescence transients O–J–I–P at different temperatures (20–30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O–J–I–P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.  相似文献   

16.
A set of plastocyanin (Pc) mutants, probing the small acidic patch (Glu59, Glu60, and Asp61) and a nearby residue, Gln88, has been constructed to provide further insight into the electron transfer process between Pc and photosystem 1. The negatively charged residues were changed into their neutral counterparts or to a positive lysine. All mutant proteins exhibited electron transfer kinetics qualitatively similar to those of the wild type protein over a wide range of Pc concentrations. The kinetics were slightly faster for the Gln88Lys mutant, while they were significantly slower for the Glu59Lys mutant. The data were analyzed with two different models: one involving a conformational change of the Pc-photosystem 1 complex that precedes the electron transfer step (assumed to be irreversible) [Bottin, H., and Mathis, P. (1985) Biochemistry 24, 6453-6460] and another where no conformational change occurs, the electron transfer step is reversible, and dissociation of products is explicitly taken into account [Drepper, F., Hippler, M., Nitschke, W., and Haehnel, W. (1996) Biochemistry 35, 1282-1295]. Both models can account for the observed kinetics in the limits of low and high Pc concentrations. To discriminate between the models, the effects of added magnesium ions on the kinetics were investigated. At a high Pc concentration (0.7 mM), the ionic strength dependence was found to be consistent with the model involving a conformational change but not with the model where the electron transfer is reversible. One residue in the small acidic patch, Glu60, seems to be responsible for the major part of the ionic strength dependence of the kinetics.  相似文献   

17.
The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0 μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP+ as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants.  相似文献   

18.
The excitation transport and trapping kinetics of core antenna-reaction center complexes from photosystem I of wild-type Synechocystis sp. PCC 6803 were investigated under annihilation-free conditions in complexes with open and closed reaction centers. For closed reaction centers, the long-component decay-associated spectrum (DAS) from global analysis of absorption difference spectra excited at 660 nm is essentially flat (maximum amplitude <10(-5) absorbance units). For open reaction centers, the long-time spectrum (which exhibits photobleaching maxima at approximately 680 and 700 nm, and an absorbance feature near 690 nm) resembles one previously attributed to (P700(+) - P700). For photosystem I complexes excited at 660 nm with open reaction centers, the equilibration between the bulk antenna and far-red chlorophylls absorbing at wavelengths >700 nm is well described by a single DAS component with lifetime 2.3 ps. For closed reaction centers, two DAS components (2.0 and 6.5 ps) are required to fit the kinetics. The overall trapping time at P700 ( approximately 24 ps) is very nearly the same in either case. Our results support a scenario in which the time constant for the P700 --> A(0) electron transfer is 9-10 ps, whereas the kinetics of the subsequent A(0) --> A(1) electron transfer are still unknown.  相似文献   

19.
Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.  相似文献   

20.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号