首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses low-angle (LAXS) and wide-angle (WAXS) X-ray synchrotron scattering, volume measurements and thin layer chromatography to determine the structure and interactions of SOPC, SOPC/cholesterol mixtures, SOPC/peptide and SOPC/cholesterol/peptide mixtures. N-acetyl-LWYIK-amide (LWYIK) represents the naturally-occurring CRAC motif segment in the pretransmembrane region of the gp41 protein of HIV-1, and N-acetyl-IWYIK-amide (IWYIK), an unnatural isomer, is used as a control. Both peptides thin the SOPC bilayer by approximately 3 A, and cause the area/unit cell (peptide+SOPC) to increase by approximately 9 A2 from the area/lipid of SOPC at 30 degrees C (67.0+/-0.9 A2). Model fitting suggests that LWYIK's average position is slightly closer to the bilayer center than IWYIK's, and both peptides are just inside of the phosphate headgroup. Both peptides increase the wide-angle spacing d of SOPC without cholesterol, whereas with 50% cholesterol LWYIK increases d but IWYIK decreases d. TLC shows that LWYIK is more hydrophobic than IWYIK; this difference persists in peptide/SOPC 1:9 mole ratio mixtures. Both peptides counteract the chain ordering effect of cholesterol to roughly the same degree, and both decrease KC, the bending modulus, thus increasing the SOPC membrane fluidity. Both peptides nucleate crystals of cholesterol, but the LWYIK-induced crystals are weaker and dissolve more easily.  相似文献   

2.
Iron is essential for most living organisms. The iron‐regulated transporter1 (IRT1) plays a major role in iron uptake in roots, and its trafficking from endoplasmic reticulum (ER) to plasma membrane (PM) is tightly coordinated with changes in iron environment. However, studies on the IRT1 response are limited. Here, we report that Malus xiaojinesis IRT1 (MxIRT1) associates with detergent‐resistant membranes (DRMs, a biochemical counterpart of PM microdomains), whereas the PM microdomains are known platforms for signal transduction in the PM. Depending on the shift of MxIRT1 from microdomains to homogeneous regions in PM, MxIRT1‐mediated iron absorption is activated by the cholesterol recognition/interaction amino acid consensus (CRAC) motif of MxIRT1. MxIRT1 initially associates with DRMs in ER via its transmembrane domain 1 (TMD1), and thus begins DRMs‐dependent intracellular trafficking. Subsequently, MxIRT1 is sequestered in COPII vesicles via the ER export signal sequence in MxIRT1. These studies suggest that iron homeostasis is influenced by the CRAC motif and TMD1 domain due to their determination of MxIRT1‐DRMs association.   相似文献   

3.
We have studied the interactions with neutral phospholipid bilayers of FPI, the 23-residue fusogenic N-terminal peptide of the HIV-1LAI transmembrane glycoprotein gp41, by CD, EPR, NMR, and solid state NMR (SSNMR) with the objective of understanding how it lyses and fuses cells. Using small unilamellar vesicles made from egg yolk phoshatidylcholine which were not fused or permeabilised by the peptide we obtained results suggesting that it was capable of inserting as an α-helix into neutral phospholipid bilayers but was only completely monomeric at peptide/lipid (P/L) ratios of 1/2000 or lower. Above this value, mixed populations of monomeric and multimeric forms were found with the proportion of multimer increasing proportionally to P/L, as calculated from studies on the interaction between the peptide and spin-labelled phospholipid. The CD data indicated that, at P/L between 1/200 and 1/100, approximately 68% of the peptide appeared to be in α-helical form. When P/L=1/25 the α-helical content had decreased to 41%. Measurement at a P/L of 1/100 of the spin lattice relaxation effect on the 13C nuclei of the phospholipid acyl chains of an N-terminal spin label attached to the peptide showed that most of the peptide N-termini were located in the interior hydrocarbon region of the membrane. SSNMR on multilayers of ditetradecylphosphatidyl choline at P/Ls of 1/10, 1/20 and 1/30 showed that the peptide formed multimers that affected the motion of the lipid chains and disrupted the lipid alignment. We suggest that these aggregates may be relevant to the membrane-fusing and lytic activities of FPI and that they are worthy of further study. Received: 8 June 1998 / Revised version: 18 November 1998 / Accepted: 28 December 1998  相似文献   

4.
Human (HIV-1) and simian (SIV) immunodeficiency virus fusion with the host cell is promoted by the receptor-triggered refolding of the gp41 envelope protein into a stable trimer-of-hairpins structure that brings viral and cellular membranes into close proximity. The core of this hairpin structure is a six-helix bundle in which an inner homotrimeric coiled coil is buttressed by three antiparallel outer HR2 helices. We have used stopped-flow circular dichroism spectroscopy to characterize the unfolding and refolding kinetics of the six-helix bundle using the HIV-1 and SIV N34(L6)C28 polypeptides. In each case, the time-course of ellipticity changes in refolding experiments is well described by a simple two-state model involving the native trimer and the unfolded monomers. The unfolding free energy of the HIV-1 and SIV trimers and their urea dependence calculated from kinetic data are in very good agreement with data measured directly by isothermal unfolding experiments. Thus, formation of the gp41 six-helix bundle structure involves no detectable population of stable, partly folded intermediates. Folding of HIV-1 N34(L6)C28 is five orders of magnitudes faster than folding of its SIV counterpart in aqueous buffer: k(on),(HIV-1)=1.3 x 10(15)M(-2)s(-1) versus k(on),(SIV)=1.1 x 10(10)M(-2)s(-1). The unfolding rates are similar: k(off),(HIV-1)=1.1 x 10(-5)s(-1) versus k(off),(SIV=)5.7 x 10(-4)s(-1). Kinetic m-values indicate that the transition state for folding of the HIV-1 protein is significantly more compact than the transition state of the SIV protein. Replacement of a single SIV threonine by isoleucine corresponding to position 573 in the HIV-1 sequence significantly stabilizes the protein and renders the folding rate close to that of the HIV-1 protein yet without making the transition state of the mutant as compact as that of the HIV-1 protein. Therefore, the overall reduction of surface exposure in the high-energy transition state seems not to account for different folding rates. While the available biological evidence suggests that refolding of the gp41 protein is slow, our study implies that structural elements outside the trimer-of-hairpins limit the rate of HIV-1 fusion kinetics.  相似文献   

5.
Abstract

The icosahedral Polio virus capsid consists of 60 copies of each of the coat proteins VP1, VP2, VP3 and myristolyated VP4 (myrVP4). Catalyzed by the host cell receptor the Polio virus enters the host cell via externalization of myrVP4 and the N terminal part of VP1. There are several assumptions about the individual role of both of the proteins in the mechanism of membrane attachment and genome injection. We use the first 32 N terminal amino acids of VP1 and applied molecular dynamics simulations to assess its mechanism of function when attached and inserted into hydrated lipid membranes (POPC). Helical models are placed in various positions in regard to the lipid membrane to start with. As a comparison, the first 33 amino acids of the fusion peptide of gp41 of HIV-1 are simulated under identical conditions. Computational data support the idea that VP1 is not penetrating into the membrane to form a pore; it rather lays on the membrane surface and only perturbs the membrane. Furthermore, this idea is strengthened by channel recordings of both peptides showing irregular openings.  相似文献   

6.
Huang JH  Liu ZQ  Liu S  Jiang S  Chen YH 《FEBS letters》2006,580(20):4807-4814
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus–cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection.  相似文献   

8.
HIV-1 gag与gp41基因片段的序列特征与亚型研究   总被引:5,自引:0,他引:5  
本文对华北地区出入境39例HIV-1阳性样本(中国21例,非洲17例,东南亚1例)的gag和env两个基因片段进行了序列特征和亚型对比分析。发现了A、A1、A3、B、C、G亚型和重组亚型03_AB、01_AE、AG、02_AG、07_BC、08_BC、CD和06_CPX共14个亚型,其中重组亚型占57.2%(8/14)。表明HIV-1基因变异较快,亚型分布广泛,重组亚型有增多趋势。此外发现26.7%(8/30)的样本,其gag和env基因区亚型表现不一致。提示在研究HIV-1亚型中应综合gag和env两个基因区的序列特征进行亚型分析。  相似文献   

9.
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors.  相似文献   

10.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

11.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

12.
朱赟  陈应华 《生命科学》2010,(11):1122-1128
AIDS是严重危害人类健康的疾病,而HIV是导致这种疾病的病毒。gp41六螺旋在介导HIV-1病毒与靶细胞间的膜融合过程中起着重要作用。因此,对于gp41结合蛋白的研究有助于深入了解gp41在HIV-1感染整个过程中扮演的角色,解释gp41对靶细胞的调控机制,为寻找新的抗艾滋病药物靶点以及艾滋病抑制剂的设计提供有益的思路。作者的实验室相继发现了一批与gp41六螺旋结构相互作用的蛋白质,进而对HIV-1 gp41六螺旋介导的膜融合过程和HIV-1感染机理有了更深入的了解。  相似文献   

13.
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.  相似文献   

14.

Background

The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes.

Results

The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera.

Conclusions

Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.  相似文献   

15.
Helix-helix interactions in the putative three-helix bundle formation of the gp41 transmembrane (TM) domain may contribute to the process of virus-cell membrane fusion in HIV-1 infection. In this study, molecular dynamics is used to analyze and compare the conformations of monomeric and trimeric forms of the TM domain in various solvent systems over the course of 4 to 23-ns simulations. The trimeric bundles of the TM domain were stable as helices and remained associated in a hydrated POPE lipid bilayer for the duration of the 23-ns simulation. Several stable inter-chain hydrogen bonds, mostly among the three deprotonated arginine residues located at the center of each of the three TM domains, formed in a right-handed bundle embedded in the lipid bilayer. No such bonds were observed when the bundle was left-handed or when the central arginine residue in each of the three TM helices was replaced with isoleucine (R_I mutant), suggesting that the central arginine residues may play an essential role in maintaining the integrity of the three-helix bundle. These observations suggest that formation of the three-helix bundle of the TM domain may play a role in the trimerization of gp41, thought to occur during the virus-cell membrane fusion process.  相似文献   

16.
Here, we predicted the minimal N-terminal fragment of gp41 required to induce significant membrane destabilization using IMPALA. This algorithm is dedicated to predict peptide interaction with a membrane. We based our prediction of the minimal fusion peptide on the tilted peptide theory. This theory proposes that some protein fragments having a peculiar distribution of hydrophobicity adopt a tilted orientation at a hydrophobic/hydrophilic interface. As a result of this orientation, tilted peptides should disrupt the interface. We analysed in silico the membrane-interacting properties of gp41 N-terminal peptides of different length derived from the isolate BRU and from an alignment of 710 HIV strains available on the Los Alamos National Laboratory. Molecular modelling results indicated that the 12 residue long peptide should be the minimal fusion peptide. We then assayed lipid-mixing and leakage of T-cell-like liposomes with N-terminal peptides of different length as first challenge of our predictions. Experimental results confirmed that the 12 residue long peptide is necessary and sufficient to induce membrane destabilization to the same extent as the 23 residue long fusion peptide. In silico analysis of some fusion-incompetent mutants presented in the literature further revealed that they cannot insert into a modelled membrane correctly tilted. According to this work, the tilted peptide model appears to explain at least partly the membrane destabilization properties of HIV fusion peptide.  相似文献   

17.
TTRAP is a PML-NB protein that is involved in the NF-κB signaling pathway. TTRAP was recently identified by yeast two-hybrid analysis as a HIV-1 integrase (HIV-1 IN) interacting protein. This interaction was verified by co-immunoprecipitation, GST pull-down, and intracellular imaging, and deletion assays suggested that the N-terminal 180 residues of TTRAP are responsible for the interaction. In stable TTRAP knock-down cell lines, the integration of viral vectors decreased significantly compared with non-silenced cell lines. Conversely, overexpression of TTRAP by transient transfection increased the percentage of integration events. This is the first time that TTRAP has been shown to interact with HIV-1 IN and facilitate lentiviral vector integration. These findings reveal a new function of TTRAP and expand our understanding of the cellular response to HIV infection. The interaction between TTRAP and HIV-1 IN may be useful in designing new anti-viral strategies as well as for improving the efficiency of lentiviral-vector-mediated gene delivery.  相似文献   

18.
目的:筛选1型人免疫缺陷病毒(HIV-1)中国流行株中包膜蛋白gp41的优势抗原片段,构建具有区域流行代表性的HIV-1 gp41重组抗原,为改进现有HIV-1初筛试剂盒中使用的同类抗原奠定基础。方法:利用免疫斑点杂交和生物信息学方法,从收集自重庆、广州、上海的区域代表性150份HIV-1感染者血清标本中筛选gp41抗原性强的候选样本,利用RT-PCR及巢式PCR方法扩增包含重要抗原表位决定蔟的gp41基因片段,与原核表达载体pQE30连接,转化大肠杆菌M15构建gp41重组抗原表达菌株,表达后经亲和层析纯化、SDS-PAGE和Western印迹鉴定。结果:兔源HRP标记的gp41多抗能识别标本中gp41抗原性差异,得到候选样本,扩增包含gp41主要抗原表位片段;构建了包含gp41抗原表达簇的重组原核表达质粒,表达、纯化后经His标签抗体Western印迹鉴定为阳性。结论:高纯度的重组优势gp41抗原的构建和鉴定,为进一步改进现有HIV初筛诊断奠定了基础。  相似文献   

19.
20.
Abstract Rabbit antibodies were induced against a free cyclic peptide representing the chimeric sequence of a consensus V3 loop of HIV-1 gp120. The reactivity of these antibodies was tested in a biosensor system (BIAcore, Pharmacia AB, Uppsala, Sweden) and in ELISA with the peptide immunogen in its cyclic and linear forms, as well as with peptides corresponding to the V3 region of different HIV-1 variants. The antibodies reacted with all the peptides tested both in ELISA and in biosensor assays and recognized the cyclic form of the chimeric peptide better than the linear form. Although antibodies raised against the V3 region of particular HIV-1 variants cross-react with other HIV-1 strains, it seems that the use of a chimeric peptide as immunogen improved the cross-reactivity spectrum of recognition of the antibodies. The anti-V3 antibodies were also tested for their ability to neutralize in vitro four HIV-1 laboratory strains. Only the HIVMN variant was found to be neutralized. Compared to conventional solid phase immunoassays, the BIAcore presents several advantages for measuring the differential reactivity of peptide analogues. In view of their broadly cross-reactive potential, antibodies raised against a consensus sequence should be useful in immunodiagnosis of viral antigenic variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号