首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   

2.
Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c(3) isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.  相似文献   

3.
A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens.  相似文献   

4.
The structure of a novel c(7)-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 A resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c(7)-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c(7) molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, E(app), of domain C is -105 mV, 50 mV higher than that of PpcA.  相似文献   

5.
The complete genome sequence of the delta-proteobacterium Geobacter sulfurreducens reveals a large abundance of multiheme cytochromes. Cytochrome c(7), isolated from this metal ion-reducing bacterium, is a triheme periplasmic electron-transfer protein with M(r) 9.6 kDa. This protein is involved in metal ion-reducing pathways and shares 56% sequence identity with a triheme cytochrome isolated from the closely related delta-proteobacterium Desulfuromonas acetoxidans (Dac(7)). In this work, two-dimensional NMR was used to monitor the heme core and the general folding in solution of the G. sulfurreducens triheme cytochrome c(7) (PpcA). NMR signals obtained for the three hemes of PpcA at different stages of oxidation were cross-assigned to the crystal structure [Pokkuluri, P. R., Londer, Y. Y., Duke, N. E. C., Long, W. C., and Schiffer, M. (2004) Biochemistry 43, 849-859] using the complete network of chemical exchange connectivities, and the order in which each heme becomes oxidized was determined at pH 6.0 and 8.2. Redox titrations followed by visible spectroscopy were also performed in order to monitor the macroscopic redox behavior of PpcA. The results obtained showed that PpcA and Dac(7) have different redox properties: (i) the order in which each heme becomes oxidized is different; (ii) the reduction potentials of the heme groups and the global redox behavior of PpcA are pH dependent (redox-Bohr effect) in the physiological pH range, which is not observed with Dac(7). The differences observed in the redox behavior of PpcA and Dac(7) may account for the different functions of these proteins and constitute an excellent example of how homologous proteins can perform different physiological functions. The redox titrations followed by visible spectroscopy of PpcA and two mutants of the conserved residue F15 (PpcAF15Y and PpcAF15W) lead to the conclusion that F15 modulates the redox behavior of PpcA, thus having an important physiological role.  相似文献   

6.
The geometry of the axial ligands of the hemes in the triheme cytochrome PpcA from Geobacter sulfurreducens was determined in solution for the ferric form using the unambiguous assignment of the NMR signals of the α-substituents of the hemes. The paramagnetic 13C shifts of the hemes can be used to define the heme electronic structure, the geometry of the axial ligands, and the magnetic susceptibility tensor. The latter establishes the magnitude and geometrical dependence of the pseudocontact shifts, which are crucial to warrant reliable structural constraints for a detailed structural characterization of this paramagnetic protein in solution.  相似文献   

7.
The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways.  相似文献   

8.
Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural-functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H-13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.  相似文献   

9.
The fumarate reductases from S. frigidimarina NCIMB400 and S. oneidensis MR-1 are soluble and monomeric enzymes located in the periplasm of these bacteria. These proteins display two redox active domains, one containing four c-type hemes and another containing FAD at the catalytic site. This arrangement of single-electron redox co-factors leading to multiple-electron active sites is widespread in respiratory enzymes. To investigate the properties that allow a chain of single-electron co-factors to sustain the activity of a multi-electron catalytic site, redox titrations followed by NMR and visible spectroscopies were applied to determine the microscopic thermodynamic parameters of the hemes. The results show that the redox behaviour of these fumarate reductases is similar and dominated by a strong interaction between hemes II and III. This interaction facilitates a sequential transfer of two electrons from the heme domain to FAD via heme IV.  相似文献   

10.
The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (-162, -143, and -133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox-Bohr interactions (up to -62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.  相似文献   

11.
The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.  相似文献   

12.
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c′) and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nm to μm KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.  相似文献   

13.
In green sulfur photosynthetic bacteria, the cytochrome cz (cyt cz) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt cz subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt cz subunit (C-cyt cz) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-Å resolution. The overall fold of C-cyt cz consists of four α-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt cz supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt cz.  相似文献   

14.
The characterisation of individual centres in multihaem proteins is difficult due to the similarities in the redox and spectroscopic properties of the centres. NMR has been used successfully to distinguish redox centres and allow the determination of the microscopic thermodynamic parameters in several multihaem cytochromes c3 isolated from different sulphate-reducing bacteria. In this article we show that it is also possible to discriminate the kinetic properties of individual centres in multihaem proteins, if the complete microscopic thermodynamic characterisation is available and the system displays fast intramolecular equilibration in the time scale of the kinetic experiment. The deconvolution of the kinetic traces using a model of thermodynamic control provides a reference rate constant for each haem that does not depend on driving force and can be related to structural factors. The thermodynamic characterisation of three tetrahaem cytochromes and their kinetics of reduction by sodium dithionite are reported in this paper. Thermodynamic and kinetic data were fitted simultaneously to a model to obtain microscopic reduction potentials, haem-haem and haem-proton interacting potentials, and reference rate constants for the haems. The kinetic information obtained for these cytochromes and recently published data for other multihaem cytochromes is discussed with respect to the structural factors that determine the reference rates. The accessibility for the reducing agent seems to play an important role in controlling the kinetic rates, although is clearly not the only factor.  相似文献   

15.
Cytochromes c 7 are periplasmic triheme proteins that have been reported exclusively in δ-proteobacteria. The structures of five triheme cytochromes identified in Geobacter sulfurreducens and one in Desulfuromonas acetoxidans have been determined. In addition to the hemes and axial histidines, a single aromatic residue is conserved in all these proteins—phenylalanine 15 (F15). PpcA is a member of the G. sulfurreducens cytochrome c 7 family that performs electron/proton energy transduction in addition to electron transfer that leads to the reduction of extracellular electron acceptors. For the first time we probed the role of the F15 residue in the PpcA functional mechanism, by replacing this residue with the aliphatic leucine by site-directed mutagenesis. The analysis of NMR spectra of both oxidized and reduced forms showed that the heme core and the overall fold of the mutated protein were not affected. However, the analysis of 1H–15N heteronuclear single quantum coherence NMR spectra evidenced local rearrangements in the α-helix placed between hemes I and III that lead to structural readjustments in the orientation of heme axial ligands. The detailed thermodynamic characterization of F15L mutant revealed that the reduction potentials are more negative and the redox-Bohr effect is decreased. The redox potential of heme III is most affected. It is of interest that the mutation in F15, located between hemes I and III in PpcA, changes the characteristics of the two hemes differently. Altogether, these modifications disrupt the balance of the global network of cooperativities, preventing the F15L mutant protein from performing a concerted electron/proton transfer.  相似文献   

16.
A comparative study on the solution structures of bovine microsomal cytochrome b5 (Tb5) and the mutant V45H has been achieved by 1D and 2D 1H-NMR spectroscopy to clarify the differences in the solution conformations between these two proteins. The results reveal that the global folding of the V45H mutant in solution is unchanged, but the subtle changes exist in the orientation of the axial ligand His39, and heme vinyl groups. The side chain of His45 in V45H mutant extends to the outer edge of the heme pocket leaving a cavity at the site originally occupied by the inner methyl group of Val45 residue. In addition, the imidazole ring of axial ligand His39 rotates counterclockwise by approximately 3 degrees around the His-Fe-His axis, and the 4-heme vinyl group turns to the space vacated by the removed side chain due to the mutation. Furthermore, the helix III of the heme pocket undergoes outward displacement, while the linkage between helix II and III is shifted leftward. These observations are not only consistent with the pattern of the pseudocontact shifts of the heme protons, but also well account for the lower stability of V45H mutant against heat and urea.  相似文献   

17.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

18.
19.
Cytochrome c6A is a unique dithio-cytochrome present in land plants and some green algae. Its sequence and occurrence in the thylakoid lumen suggest that it is derived from cytochrome c6, which functions in photosynthetic electron transfer between the cytochrome b6f complex and photosystem I. Its known properties, however, and a strong indication that the disulfide group is not purely structural, indicate that it has a different, unidentified function. To help in the elucidation of this function the crystal structure of cytochrome c6A from Arabidopsis thaliana has been determined in the two redox states of the heme group, at resolutions of 1.2 A (ferric) and 1.4 A (ferrous). These two structures were virtually identical, leading to the functionally important conclusion that the heme and disulfide groups do not communicate by conformational change. They also show, however, that electron transfer between the reduced disulfide and the heme is feasible. We therefore suggest that the role of cytochrome c6A is to use its disulfide group to oxidize dithiol/disulfide groups of other proteins of the thylakoid lumen, followed by internal electron transfer from the dithiol to the heme, and re-oxidation of the heme by another thylakoid oxidant. Consistent with this model, we found a rapid electron transfer between ferro-cytochrome c6A and plastocyanin, with a second-order rate constant, k2=1.2 x 10(7) M(-1) s(-1).  相似文献   

20.
Cytochromes c were found in the cells of the bacterium Geobacter sulfurreducens AM-1 grown on acetate and methacrylate. The periplasmic extract of G. sulfurreducens AM-1 contained about 88% of the total content of cytochromes c of intact cells. The analysis of cytochromes c from the native cells of G. sulfurreducens AM-1, from the periplasmic extract and from the cells treated by an alkaline solution showed the presence of nine proteins containing heme c. The molecular masses of cytochromes c from G. sulfurreducens AM-1 were 12.5, 15.5, 25.7, 29.5, 34.7, 41.7, 50.1, 63.1, and 67.6 kDa; localization of each cytochrome c was determined. Three heme-containing proteins (15.5 kDa, 25.7 kDa, and 29.5 kDa with the most intensive staining) were present mainly in the periplasm of the bacterium. The other two (50.1 and 67.6 kDa) were supposedly localized in the cell membrane. Cytochromes c with the molecular masses of 12.5, 15.5, and 67.6 kDa are considered as possible components of the methacrylate redox system of G. sulfurreducens AM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号