首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.  相似文献   

2.
M D Bazzi  G L Nelsestuen 《Biochemistry》1991,30(32):7961-7969
Protein kinase C and two other proteins with molecular masses of 64 and 32 kDa, purified from bovine brain, constitute a type of protein that binds a large number of calcium ions in a phospholipid-dependent manner. This study suggested that these proteins also induced extensive clustering of acidic phospholipids in the membranes. Clustering of acidic phospholipids was detected by the self-quenching of a fluorescence probe that was attached to acidic phospholipids (phosphatidic acid or phosphatidylglycerol). Addition of these proteins to phospholipid vesicles containing 15% fluorescently labeled phosphatidic acid dispersed in neutral phosphatidylcholine resulted in extensive, rapid, and calcium-dependent quenching of the fluorescence signal. Fluorescence-quenching requirements coincided with protein-membrane binding characteristics. As expected, the addition of these proteins to phospholipid vesicles containing fluorescent phospholipids dispersed with large excess of acidic phospholipids produced only small fluorescence changes. In addition, association of these proteins with vesicles composed of 100% fluorescent phospholipids resulted in no fluorescence quenching. Protein binding to vesicles containing 5-50% fluorescent phospholipid showed different levels of fluorescence quenching that closely resemble the behavior expected for extensive segregation of the acidic phospholipids in the outer layer of the vesicles. Thus, the fluorescence quenching appeared to result from self-quenching of the fluorophores that become clustered upon protein-membrane binding. These results were consistent with protein-membrane binding that was maintained by calcium bridges between the proteins and acidic phospholipids in the membrane. Since each protein bound eight or more calcium ions in the presence of phospholipid, they may each induce clustering of a related number of acidic phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human thrombomodulin, an endothelial-cell-membrane glycoprotein, has been purified from placenta by Triton X-100 extraction and by affinity chromatography on concanavalin A-Sepharose and thrombin-Sepharose. It has been characterized by its ability to promote the activation of human protein C by human alpha-thrombin in the presence of Ca2+ and fulfilled the requirements of a cofactor. Reconstitution of thrombomodulin into phospholipid vesicles containing anionic phospholipids resulted in an increased rate of activation of protein C. Cardiolipin and vesicles containing phosphatidylcholine/phosphatidylserine (1:1, w/w) were the most effective. The apparent Km of the thrombin-thrombomodulin complex for protein C was 2 microM. It was not changed in the presence of phospholipid, whereas the Vmax. could be apparently increased up to 3.2-fold depending on the phospholipid and on its concentration, the catalytic-centre activity reaching 15.7 mol of activated protein C formed/min per mol of thrombin. Above their optimal concentrations, phospholipids inhibited the amidolytic activity of activated protein C. Phospholipids had no effect on the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues. These results show that the positive effect of anionic phospholipids in the activation of protein C by the thrombin-thrombomodulin complex involves a Ca2+-dependent interaction between protein C and phospholipids. They suggest that the enhancement of thrombomodulin activity by such phospholipids may be of functional significance.  相似文献   

4.
Saposin D is generated together with three similar proteins, saposins A, B and C, from a common precursor, called prosaposin, in acidic organelles such as late endosomes and lysosomes. Although saposin D has been reported to stimulate the enzymatic hydrolysis of sphingomyelin and ceramide, its physiological role has not yet been clearly established. In the present study we examined structural and membrane-binding properties of saposin D. At acidic pH, saposin D showed a great affinity for phospholipid membranes containing an anionic phospholipid such as phosphatidylserine or phosphatidic acid. The binding of saposin D caused destabilization of the lipid surface and, conversely, the association with the membrane markedly affected the fluorescence properties of saposin D. The presence of phosphatidylserine-containing vesicles greatly enhanced the intrinsic tyrosine fluorescence of saposin D, which contains tyrosines but not tryptophan residues. The structural properties of saposin D were investigated in detail using advanced MS analysis. It was found that the main form of saposin D consists of 80 amino acid residues and that the six cysteine residues are linked in the following order: Cys5-Cys78, Cys8-Cys72 and Cys36-Cys47. The disulfide pattern of saposin D is identical with that previously established for two other saposins, B and C, which also exhibit a strong affinity for lipids. The common disulfide structure probably has an important role in the interaction of these proteins with membranes. The analysis of the sugar moiety of saposin D revealed that the single N-glycosylation site present in the molecule is mainly modified by high-mannose-type structures varying from two to six hexose residues. Deglycosylation had no effect on the interaction of saposin D with phospholipid membranes, indicating that the glycosylation site is not related to the lipid-binding site. The association of saposin D with membranes was highly dependent on the composition of the bilayer. Neither ceramide nor sphingomyelin, sphingolipids whose hydrolysis is favoured by saposin D, promoted its binding, while the presence of an acidic phospholipid such as phosphatidylserine or phosphatidic acid greatly favoured the interaction of saposin D with vesicles at low pH. These results suggest that, in the acidic organelles where saposins are localized, anionic phospholipids may be determinants of the saposin D topology and, conversely, saposin D may affect the lipid organization of anionic phospholipid-containing membranes.  相似文献   

5.
In order to obtain strong inhibitors of classical pathway of complement activation the low weight negative charged compounds have been investigated. On the basis of bisphenol A anionic derivatives with one or two carboxylic, sulphate and phosphate groups the critical role of negative charged groups for complement-inhibiting activity has been established. It was determined that two sulphate or phosphate groups in the molecule provide the most inhibiting effect. At the next stage a set of bisphenol disulphates of varying structures has been synthesized and investigated. Bulky hydrophobic groups (cyclohexyliden, fluorenyliden, anthronyliden) at the central part of the bisphenol molecule it was found to increase complement-inhibiting activity markedly. The replacement of the ortho-positions to the charged group by halogens or alkyl groups (allyl, propyl) increases the inhibiting effect. It was showed by ELISA that several compounds studied interact with C1q, C1r /C1s components of complement. For the set of bisphenol disulphates the QSAR equation with hydrophobic coefficient and electronic parameters has been formulated. Both hydrophobic and electrostatic interactions it was established to have a great significance for the inhibition of classical pathway of complement activation.  相似文献   

6.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

7.
Self-assembly of laminin induced by acidic pH   总被引:1,自引:0,他引:1  
The supramolecular architecture of the basement membrane is provided by two enmeshed networks of collagen IV and laminin. The laminin network is maintained exclusively by interactions among individual laminin molecules and does not depend on the presence of other extracellular matrix components. Laminin polymers can be obtained in vitro either in solution or in association with the surface of bilayers containing acidic lipids. In this work, we have tested the hypothesis that the negative charges present on acidic lipids establish an acid microenvironment that is directly responsible for inducing laminin aggregation. Using light-scattering measurements, we show that laminin does not aggregate on vesicles of neutral lipids, whereas instantaneous aggregation occurs to progressively greater extents as the proportion of acidic phospholipids in the vesicles is increased. Aggregation of laminin induced by vesicles containing acidic phospholipids occurs very rapidly, so that maximal aggregation for each condition is reached within 1 min after laminin dilution. Aggregation depends on the presence of Ca(2+) ions, is reversed by increasing ionic strength, and can be detected at laminin concentrations as low as 6 nM. In addition, we show that, in the absence of vesicles, acidification of the bulk solution can also induce laminin self-polymerization through a process that exhibits the same properties as lipid-induced polymerization. The fact that there is a correspondence between the processes of self-polymerization of laminin in acidic medium and in neutral medium but in the presence of vesicles containing negatively charged lipids leads us to propose that the microenvironment of an acidic surface may trigger the assembly of laminin networks. In vivo, such an acidic microenvironment would be provided by negatively charged sialic acid and sulfate groups present in the glycocalyx surrounding the cells.  相似文献   

8.
S Massari  D Pascolini 《Biochemistry》1977,16(6):1189-1195
A new method has been developed to detect the distribution of phosphatidic acid on the external surface of mixed phospholipid vesicles. Some positive dyes undergo large absorbance changes when the spatial separation between two or more dye molecules is smaller than a critical distance. When these dyes interact with mixed phospholipid vesicles, the absorbance changes may be utilized to calculate the amount of phosphatidic acid molecules which, on the external surface, occupy nearby positions not exceeding the critical dye distance, i.e., the amount of paired phosphatidic acid molecules. This amount was found to be higher than that calculated by statistical methods, indicating that phosphatidic acid molecules tend to be associated, in spite of the electrostatic repulsion between negative groups. The dependence of the amount of paired phosphatidic acid molecules on the pH, phosphatidylcholine:phosphatidic acid ratio, and temperature has been also analyzed.  相似文献   

9.
The binding of pentalysine to phospholipid vesicles depends in a sigmoidal manner on the mole fraction of acidic lipid in the vesicles. A simple analysis demonstrates that this apparent cooperativity is probably due to both the reduction of dimensionality that occurs when the first basic residue binds to an acidic lipid in the membrane and the Boltzmann accumulation of the peptide in the electrostatic diffuse double layer produced by the charged lipids.  相似文献   

10.
Some mastoparan peptides extracted from social wasps display antimicrobial activity and some are hemolytic and cytotoxic. Although the cell specificity of these peptides is complex and poorly understood, it is believed that their net charges and their hydrophobicity contribute to modulate their biological activities. We report a study, using fluorescence and circular dichroism spectroscopies, evaluating the influence of these two parameters on the lytic activities of five mastoparans in zwitterionic and anionic phospholipid vesicles. Four of these peptides, extracted from the venom of the social wasp Polybia paulista, present both acidic and basic residues with net charges ranging from +1 to +3 which were compared to Mastoparan-X with three basic residues and net charge +4. Previous studies revealed that these peptides have moderate-to-strong antibacterial activity against Gram-positive and Gram-negative microorganisms and some of them are hemolytic. Their affinity and lytic activity in zwitterionic vesicles decrease with the net electrical charges and the dose response curves are more cooperative for the less charged peptides. Higher charged peptides display higher affinity and lytic activity in anionic vesicles. The present study shows that the acidic residues play an important role in modulating the peptides’ lytic and biological activities and influence differently when the peptide is hydrophobic or when the acidic residue is in a hydrophilic peptide.  相似文献   

11.
Davies JK  Thumser AE  Wilton DC 《Biochemistry》1999,38(51):16932-16940
A number of intracellular proteins bind to negatively charged phospholipid membranes, and this interfacial binding results in a conformational change that modulates the activity of the protein. Using a fluorescent fatty acid analogue, 11-[5-(dimethylamino)naphthalenesulfonyl]undecanoic acid (DAUDA), it is possible to demonstrate the release of this ligand from recombinant rat liver FABP in the presence of phospholipid vesicles that contain a significant proportion of anionic phospholipids. The ligand release that is observed with anionic phospholipids is sensitive to the ionic strength of the assay conditions and the anionic charge density of the phospholipid at the interface, indicating that nonspecific electrostatic interactions play an important role in the process. The stoichiometric relationship between anionic phospholipid and liver FABP suggests that the liver FABP coats the surface of the phospholipid vesicle. The most likely explanation for ligand release is that interaction of FABP with an anionic membrane interface induces a rapid conformational change, resulting in a reduced affinity of DAUDA for the protein. The nature of this interaction involves both electrostatic and nonpolar interactions as maximal release of liver FABP from phospholipid vesicles with recovery of ligand binding cannot be achieved with high salt and requires the presence of a nonionic detergent. The precise interfacial mechanism that results in the rapid release of ligand from L-FABP remains to be determined, but studies with two mutants, F3W and F18W, suggest the possible involvement of the amino-terminal region of the protein in the process. The conformational change linked to interfacial binding of this protein could provide a mechanism for fatty acid targeting within the cell.  相似文献   

12.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

13.
Electrostatic interaction is an important secondary force affecting the structure, stability, and function of lipid vesicles (liposomes). For this study, a negatively charged lipid with carboxylic acid was mixed with phospholipid to produce anionic vesicles. The electrostatics of the carboxylated anionic vesicle (ca. 200 nm diameter) was determined and correlated with entrapment capacity of the vesicles. Correlative analysis revealed the zeta potential of the vesicles as a factor quantitatively affecting the entrapment capacity for a water-soluble marker, in which the entrapment capacity reached its maximum level in less than −30 mV of zeta potential. Transmission electron microscopy (TEM) revealed that the vesicles with high entrapment capacity are composed of a unilamellar membrane. This finding is expected to be useful for efficient encapsulation of water-soluble pharmaceuticals within vesicles.  相似文献   

14.
A liposomal membrane model system was developed to examine the mechanism of spontaneous and protein-mediated intermembrane cholesterol transfer. Rat liver sterol carrier protein 2 (SCP2) and fatty acid binding protein (FABP, also called sterol carrier protein) both bind sterol. However, only SCP2 mediates sterol transfer. The exchange of sterol between small unilamellar vesicles (SUV) containing 35 mol % sterol was monitored with a recently developed assay [Nemecz, G., Fontaine, R. N., & Schroeder, F. (1988) Biochim. Biophys. Acta 943, 511-541], modified to continuous polarization measurement and not requiring separation of donor and acceptor membrane vesicles. As compared to spontaneous sterol exchange, 1.5 microM rat liver SCP2 enhanced the initial rate of sterol exchange between neutral zwwitterionic phosphatidylcholine SUV 2.3-fold. More important, the presence of acidic phospholipids (2.5-30 mol %) stimulated the SCP2-mediated increase in sterol transfer approximately 35-42-fold. Thus, acidic phospholipids strikingly potentiate the effect of SCP2 by 15-18 times as compared to SUV without negatively charged lipids. Rat liver FABP (up to 60 microM) was without effect on sterol transfer in either neutral zwitterionic or anionic phospholipid containing SUV. The potentiation of SCP2 action by acidic phospholipids was suppressed by high ionic strength, neomycin, and low pH. The results suggest that electrostatic interaction between SCP2 and negatively charged membranes may play an important role in the mechanism whereby SCP2 enhances intermembrane cholesterol transfer.  相似文献   

15.
The Streptomyces chromofuscus phospholipase D (PLD) cleavage of phosphatidylcholine in bilayers can be enhanced by the addition of the product phosphatidic acid (PA). Other anionic lipids such as phosphatidylinositol, oleic acid, or phosphatidylmethanol do not activate this PLD. This allosteric activation by PA could involve a conformational change in the enzyme that alters PLD binding to phospholipid surfaces. To test this, the binding of intact PLD and proteolytically cleaved isoforms to styrene divinylbenzene beads coated with a phospholipid monolayer and to unilamellar vesicles was examined. The results indicate that intact PLD has a very high affinity for PA bilayers at pH >/= 7 in the presence of EGTA that is weakened as Ca(2+) or Ba(2+) are added to the system. Proteolytically clipped PLD also binds tightly to PA in the absence of metal ions. However, the isolated catalytic fragment has a considerably weaker affinity for PA surfaces. In contrast to PA surfaces, all PLD forms exhibited very low affinity for PC interfaces with an increased binding when Ba(2+) was added. All PLD forms also bound tightly to other anionic phospholipid surfaces (e.g. phosphatidylserine, phosphatidylinositol, and phosphatidylmethanol). However, this binding was not modulated in the same way by divalent cations. Chemical cross-linking studies suggested that a major effect of PLD binding to PA.Ca(2+) surfaces is aggregation of the enzyme. These results indicate that PLD partitioning to phospholipid surfaces and kinetic activation are two separate events and suggest that the Ca(2+) modulation of PA.PLD binding involves protein aggregation that may be the critical interaction for activation.  相似文献   

16.
17.
Intestinal enterocytes contain high concentrations of two cytosolic fatty acid-binding proteins (FABP), liver FABP (L-FABP) and intestinal FABP (I-FABP), which are hypothesized to play a role in cellular fatty acid trafficking. The mechanism(s) by which fatty acids move from membranes to each of these proteins is not known. Here we demonstrate that fluorescent anthroyloxy fatty acid analogues (AOFA) are transferred from phospholipid vesicles to L-FABP versus I-FABP by different mechanisms. For L-FABP a diffusion-mediated transfer process is demonstrated. The AOFA transfer rate from phosphatidylcholine-containing vesicles (POPC) to L-FABP is similar to that observed with another diffusional process, namely inter-membrane AOFA transfer. Furthermore, the AOFA transfer rate was modulated by buffer ionic strength and AOFA solubility, while the transfer rate remained relatively unchanged by the presence of anionic phospholipids in vesicles. In contrast, the data for I-FABP suggest that a transient collisional interaction of I-FABP with the phospholipid membrane occurs during AOFA extraction from the vesicles by the protein. In particular, the presence of the anionic phospholipid cardiolipin in donor vesicles increased the rate of AOFA transfer to I-FABP by 15-fold compared with transfer to POPC vesicles. The effects of ionic strength on transfer suggest that the interaction of I-FABP with cardiolipin-containing vesicles is likely to contain an electrostatic component. Finally, based on the regulation of AOFA transfer to I-FABP compared with transfer from I-FABP, it is hypothesized that apo- and holo-I-FABPs adopt conformations which may differentially promote I-FABP-membrane interactions.In summary, the results suggest that I-FABP, but not L-FABP, can directly extract fatty acids from membranes, supporting the concept that I-FABP may increase the cytosolic flux of fatty acids via intermembrane transfer.  相似文献   

18.
Type II beta phosphatidylinositol phosphate kinase is a representative phosphatidylinositol phosphate kinase that is active against membrane-bound substrates. The structure of the enzyme contains a flattened basic face that spans the crystallographic dimer interface and is adjacent to the active site. Analytical ultracentrifugation shows that phosphatidylinositol phosphate kinase is a dimer in solution. Modeling suggested that the flattened face binds to acidic phospholipids by electrostatic interactions. The enzyme binds to acidic vesicles containing phosphatidylserine, phosphatidic acid, or phosphoinositides mixed with phosphatidylcholine, but not to neutral phosphatidylcholine vesicles. Binding to acidic vesicles is abolished in the presence of 1.0 M NaCl, consistent with an essential electrostatic contribution to the free energy of binding. The +14 charge on the flattened face of the dimer was reduced to +2 in the triple mutant Lys72Glu/Lys76Glu/Lys78Glu. The mutation has no effect on dimerization, but reduces the apparent KA for 25% phosphatidylserine/75% phosphatidylcholine mixed vesicles by 16-fold. The reduction in the level of binding can be ascribed to a loss of electrostatic interactions based on the finite difference solution to the Poisson-Boltzmann equation. The mutant reduces catalytic activity toward phosphatidylinositol 5-phosphate by approximately 50-fold. The wild-type enzyme binds half-maximally to phosphatidylinositol 4,5-bisphosphate-containing vesicles at a mole fraction of 0.3% in a phosphatidylcholine background, as compared to a 22% mole fraction in phosphatidylserine. The binding to phosphatidylinositol 4,5-bisphosphate-containing membranes is less sensitive to salt and to the triple mutation than binding to phosphatidylserine-containing membranes, suggesting that at least part of phosphatidylinositol 4,5-bisphosphate's interaction with the enzyme is independent of the flattened face. It is concluded that the flattened face of type II beta phosphatidylinositol phosphate kinase binds to membranes through nonspecific interactions, and that this interaction is essential for efficient catalysis.  相似文献   

19.
Cation-induced aggregation of acidic phospholipid vesicles consisting of dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosphatidylserine (DPPS), phosphatidylserine from bovine brain (brPS), and phosphatidylglycerol from egg yolk (eggPG) was studied. Significant differences were evident in the NaCl-induced aggregation of fully saturated and unsaturated acidic phospholipid vesicles. The threshold NaCl concentration of vesicle aggregation ([NaCl]Thr) for DPPS vesicles was 320 mM compared to 610 mM observed for brPS vesicles. For DMPG vesicles the [NaCl]Thr was 430 mM and no aggregation of eggPG vesicles could be observed upon addition of NaCl. The threshold CaCl2 concentrations of aggregation of DMPG and eggPG vesicles were 2.3 and 4.9 mM, respectively. The corresponding threshold CaCl2 concentrations for DPPS and brPS vesicles were 0.85 mM and 1.3 mM, respectively. The inclusion of cholesterol into vesicles attenuated NaCl- and CaCl2-induced aggregation of DMPG and DPPS vesicles. However, enhancement of aggregation by inclusion of cholesterol was observed in the case of NaCl-induced aggregation of brPS vesicles. It is concluded that cation mediated membrane-membrane interactions depend, in addition to polar headgroup structure, on the fatty acid composition of the phospholipids also.  相似文献   

20.
Complement activation by anionic liposomes proceeds by antibody-independent, C1q-initiated activation of the classical pathway. Purified C1q bound to anionic liposomes in an acidic lipid concentration-dependent manner. Saturation binding, but not the apparent association constant, was enhanced by increasing the cardiolipin content of the liposomes or decreasing either the pH or ionic strength of the reaction mixture. These observations indicate the involvement of electrostatic factors in the binding. A highly cationic region in the collagen-like domain of C1q comprised of residues 14-26 of the C1qA polypeptide chain was assessed for involvement in liposome binding. This region has previously been shown to mediate C1q binding to other immunoglobulin-independent activators of the classical pathway of complement. Peptides containing residues 14-26 of C1qA, denoted C1qA14-26, inhibited C1q binding to and complement activation by anionic liposomes. The inhibitory capacity of these cationic peptides had no sequence or conformation specificity. Rather, the amount of positive charge on the peptides was the determining factor. When present in excess, peptides with five cationic residues inhibited C1q binding and complement activation; however, C1q peptides with only two cationic residues did not. In addition to the C1qA14-26 region, other parts of C1q that contain cationic residues may also be involved in C1q binding to anionic liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号