首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.5 the resting cytosolic free Ca(2+) was 0.2-0.5 microM. In the presence of external Ca(2+) (1 mM) at alkaline pH this rose to 4 microM, being reduced to 0.9 microM at acid pH. Removal of external Ca(2+) caused an immediate decrease in cytosolic free Ca(2+) at 50-100 nM s(-1). Efflux rates were the same at pH 5.5, 7.5 and 9.5. Thus, ChaA, a putative Ca(2+)/H(+)exchanger, appeared not to be a major Ca(2+)-efflux pathway. In the absence of added Na(+), but with 1 mM external Ca(2+), cytosolic free Ca(2+) rose to approximately 10 microM. The addition of Na(+)(half maximum 60 mM) largely blocked this increase and immediately stimulated Ca(2+) efflux. However, this effect was not specific, since K(+) also stimulated efflux. In contrast, an increase in osmotic pressure by addition of sucrose did not significantly stimulate Ca(2+) efflux. The results were consistent with H(+) and monovalent cations competing with Ca(2+) for a non-selective ion influx channel. Ca(2+) entry and efflux in chaA and yrbG knockouts were not significantly different from wild type, confirming that neither ChaA nor YrbG appear to play a major role in regulating cytosolic Ca(2+) in Escherichia coli. The number of Ca(2+) ions calculated to move per cell per second ranged from <1 to 100, depending on conditions. Yet a single eukaryote Ca(2+) channel, conductance 100 pS, should conduct >6 million ions per second. This raises fundamental questions about the nature and regulation of Ca(2+) transport in bacteria, and other small living systems such as mitochondria, requiring a new mathematical approach to describe such ion movements. The results have important significance in the adaptation of E. coli to different ionic environments such as the gut, fresh water and in sea water near sewage effluents.  相似文献   

2.
The results here are the first demonstration of a family of carbohydrate fermentation products opening Ca2+ channels in bacteria. Methylglyoxal, acetoin (acetyl methyl carbinol), diacetyl (2,3 butane dione), and butane 2,3 diol induced Ca2+ transients in Escherichia coli, monitored by aequorin, apparently by opening Ca2+ channels. Methylglyoxal was most potent (K1/2 = 1 mM, 50 mM for butane 2,3 diol). Ca2+ transients depended on external Ca2+ (0.1-10 mM), and were blocked by La3+ (5 mM). The metabolites affected growth, methylglyoxal being most potent, blocking growth completely up to 5 h without killing the cells. But there was no affect on the number of viable cells after 24 h. These results were consistent with carbohydrate products activating a La3+-sensitive Ca2+ channel, rises in cytosolic Ca2+ possibly protecting against certain toxins. They have important implications in bacterial-host cell signalling, and where numbers of different bacteria compete for the same substrates, e.g., the gut in lactose and food intolerance.  相似文献   

3.
The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUβ, but not the related protein HUα. Here we show that the Lon protease binds to both HUβ and HUα, but selectively degrades only HUβ in the presence of ATP. Mass spectrometry of HUβ peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUβ-A20Q and HUβ-A20D more slowly than HUβ. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUα, HUβ, and HUβ-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUβ, HUα, or HUβ-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUβ.  相似文献   

4.
5.
The bacterium Escherichia coli (E. coli) moves in its natural environment in a series of straight runs, interrupted by tumbles which cause change of direction. It performs chemotaxis towards chemo-attractants by extending the duration of runs in the direction of the source. When there is a spatial gradient in the attractant concentration, this bias produces a drift velocity directed towards its source, whereas in a uniform concentration, E. coli adapts, almost perfectly in case of methyl aspartate. Recently, microfluidic experiments have measured the drift velocity of E. coli in precisely controlled attractant gradients, but no general theoretical expression for the same exists. With this motivation, we study an analytically soluble model here, based on the Barkai-Leibler model, originally introduced to explain the perfect adaptation. Rigorous mathematical expressions are obtained for the chemotactic response function and the drift velocity in the limit of weak gradients and under the assumption of completely random tumbles. The theoretical predictions compare favorably with experimental results, especially at high concentrations. We further show that the signal transduction network weakens the dependence of the drift on concentration, thus enhancing the range of sensitivity.  相似文献   

6.
7.
8.
9.
10.
11.
The outer membrane of Gram-negative bacteria is a unique asymmetric lipid bilayer composed of phospholipids (PLs) in the inner leaflet and lipopolysaccharides (LPSs) in the outer leaflet. Its function as a selective barrier is crucial for the survival of bacteria in many distinct environments, and it also renders Gram-negative bacteria more resistant to antibiotics than their Gram-positive counterparts. Here, we report the structural properties of a model of the Escherichia coli outer membrane and its interaction with outer membrane phospholipase A (OmpLA) utilizing molecular dynamics simulations. Our results reveal that given the lipid composition used here, the hydrophobic thickness of the outer membrane is ∼3 Å thinner than the corresponding PL bilayer, mainly because of the thinner LPS leaflet. Further thinning in the vicinity of OmpLA is observed due to hydrophobic matching. The particular shape of the OmpLA barrel induces various interactions between LPS and PL leaflets, resulting in asymmetric thinning around the protein. The interaction between OmpLA extracellular loops and LPS (headgroups and core oligosaccharides) stabilizes the loop conformation with reduced dynamics, which leads to secondary structure variation and loop displacement compared to that in a DLPC bilayer. In addition, we demonstrate that the LPS/PL ratios in asymmetric bilayers can be reliably estimated by the per-lipid surface area of each lipid type, and there is no statistical difference in the overall membrane structure for the outer membranes with one more or less LPS in the outer leaflet, although individual lipid properties vary slightly.  相似文献   

12.
Relatively little is known about changes in the cytosolic free calcium ion concentration ([Ca2+]c) in monocotyledonous plants. Therefore, we produced transgenic winter wheat lines stably expressing the calcium-sensitive photoprotein aequorin constitutively in the cytosol. [Ca2+]c was detected in vivo by luminometry, and [Ca2+]c elevations were imaged at video rate. Experiments with the transgenic seedlings focused on potential changes in [Ca2+]c during cold exposure. Temperature-induced changes in [Ca2+]c were found to be more dependent on the change in temperature (dT dt−1) than on the absolute value of temperature. [Ca2+]c increased only at cooling rates higher than 8°C min−1, indicating that an overall cellular [Ca2+]c increase is of minor relevance as a signal for cold acclimation in wheat under ecological conditions. The results are discussed with regard to the so-called ‘calcium signature hypothesis’.  相似文献   

13.
Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca2+) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca2+, we characterized Ca2+ homeostasis in P. aeruginosa PAO1 cells. By using Ca2+-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca2+ ([Ca2+]in) is 0.14 ± 0.05 μM. In response to external Ca2+, the [Ca2+]in quickly increased at least 13-fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca2+ modulated this response. Treatment with inhibitors known to affect Ca2+ channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca2+]in response, suggesting the importance of the corresponding mechanisms in Ca2+ homeostasis. To identify Ca2+ transporters maintaining this homeostasis, bioinformatic and LC–MS/MS-based membrane proteomic analyses were used. [Ca2+]in homeostasis was monitored for seven Ca2+-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca2+ homeostasis. The lack of PA3920 and vanadate treatment abolished Ca2+-induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca2+.  相似文献   

14.
15.
Detergent solubilization and purification of the E. coli heavy metal P-type ATPase ZntA yields an enzyme with reduced hydrolytic activity in vitro. Here, it is shown that the in vitro hydrolytic activity of detergent solubilized ZntA is increased in the presence of negatively charged phospholipids and at slightly acidic pH. The protein-lipid interaction of ZntA was characterized by enzyme-coupled ATPase assays and fluorescence spectroscopy. Among the most abundant naturally occurring phospholipids, only phosphatidyl-glycerol lipids (PG) enhance the in vitro enzymatic ATPase activity of ZntA. Re-lipidation of detergent purified ZntA with 1,2-dioleoylphosphatidyl-glycerol (DOPG) increases the ATPase activity four-fold compared to the purified state. All other E. coli phospholipids fail to activate the ATPase. Among the phosphatidyl-glycerol family, highest activity was observed for 1,2-dioleoyl-PG followed by 1,2-dimyristoyl-PG, 1,2-dipalmitoyl-PG and 1,2-distearoyl-PG. Increasing intrinsic Trp fluorescence quantum yield upon relipidation of ZntA was used to determine a pH maximum for lipid binding at pH 6.7. The pH dependence of the lipid binding was confirmed by pH-dependent ATPase assays showing maximum activity at pH 6.7. The biophysical characterization of detergent solubilized membrane proteins crucially relies on the conformational stability and functional integrity of the protein under investigation. The present study describes how the E. coli ZntA P-type ATPase can be stabilized and functionally activated in a detergent solubilized system.  相似文献   

16.
17.
The E. coli cls open reading frame (ORF) predicts a 54.8 kDa polypeptide, whereas mature cardiolipin (CL) synthase is 46 kDa. The N-terminal region extending to residue 60 contains several conserved residues but is not essential for enzyme activity. A deletion mutant that is missing residues 2-60 produces a fully active protein. These findings raise the question of why several residues in a region that is not required for enzyme activity are conserved. Recombinant DNA technology was used to introduce an EYMPE epitope (EE) tag into the interior of CL synthase. The EE tagged polypeptide retained the biological properties of wild type CL synthase, including full enzymatic activity. Site-directed mutagenesis was used to alter conserved residues in the N-terminal region. An EE tagged CL synthase in which Leu-7 and Val-8 were both replaced by Ser residues retains in vitro activity but loses most of its in vivo activity. Furthermore, the mutant protein has a higher apparent molecular mass than its parent protein. Taken together, these findings suggest that conserved residues L7 and V8 play a role in polypeptide processing, topology, or both.  相似文献   

18.
19.
Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infection and engage in a coordinated genetic and molecular cascade to colonize the urinary tract. Disrupting the assembly and/or function of virulence factors and bacterial biofilms has emerged as an attractive target for the development of new therapeutic strategies to prevent and treat urinary tract infection, particularly in the era of increasing antibiotic resistance among human pathogens. UPEC vary widely in their genetic and molecular phenotypes and more data are needed to understand the features that distinguish isolates as more or less virulent and as more robust biofilm formers or poor biofilm formers. Curli are extracellular functional amyloid fibers produced by E. coli that contribute to pathogenesis and influence the host response during urinary tract infection (UTI). We have examined the production of curli and curli-associated phenotypes including biofilm formation among a specific panel of human clinical UPEC that has been studied extensively in the mouse model of UTI. Motility, curli production, and curli-associated biofilm formation attached to plastic were the most prevalent behaviors, shared by most clinical isolates. We discuss these results in the context on the previously reported behavior and phenotypes of these isolates in the murine cystitis model in vivo.  相似文献   

20.
YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号