首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structural basis for organizational heterogeneity of lipids and proteins underlies fundamental questions about the plasma membrane of eukaryotic cells. A current hypothesis is the participation of liquid ordered (Lo) membrane domains (lipid rafts) in dynamic compartmentalization of membrane function, but it has been difficult to demonstrate the existence of these domains in live cells. Recently, giant plasma membrane vesicles (GPMVs) obtained by chemically induced blebbing of cultured cells were found to phase separate into optically resolvable, coexisting fluid domains containing Lo-like and liquid disordered (Ld)-like phases as identified by fluorescent probes. In the present study, we used these GPMVs to investigate the structural bases for partitioning of selected lipids and proteins between coexisting Lo-like/Ld-like fluid phases in compositionally complex membranes. Our results with lipid probes show that the structure of the polar headgroups, in addition to acyl chain saturation, can significantly affect partitioning. We find that the membrane anchor of proteins and the aggregation state of proteins both significantly influence their distributions between coexisting fluid phases in these biological membranes. Our results demonstrate the value of GPMVs for characterizing the phase preference of proteins and lipid probes in the absence of detergents and other perturbations of membrane structure.  相似文献   

2.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   

3.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (Ld) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (Lo) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

4.
One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates.  相似文献   

5.
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes   总被引:2,自引:0,他引:2  
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (L(d)) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (L(o)) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

6.
Cellular membranes are laterally organized into domains of distinct structures and compositions by the differential interaction affinities between various membrane lipids and proteins. A prominent example of such structures are lipid rafts, which are ordered, tightly packed domains that have been widely implicated in cellular processes. The functionality of raft domains is driven by their selective recruitment of specific membrane proteins to regulate their interactions and functions; however, there have been few general insights into the factors that determine the partitioning of membrane proteins between coexisting liquid domains. In this work, we used extensive coarse-grained and atomistic molecular dynamics simulations, potential of mean force calculations, and conceptual models to describe the partitioning dynamics and energetics of a model transmembrane domain from the linker of activation of T cells. We find that partitioning between domains is determined by an interplay between protein-lipid interactions and differential lipid packing between raft and nonraft domains. Specifically, we show that partitioning into ordered domains is promoted by preferential interactions between peptides and ordered lipids, mediated in large part by modification of the peptides by saturated fatty acids (i.e., palmitoylation). Ordered phase affinity is also promoted by elastic effects, specifically hydrophobic matching between the membrane and the peptide. Conversely, ordered domain partitioning is disfavored by the tight molecular packing of the lipids therein. The balance of these dominant drivers determines partitioning. In the case of the wild-type linker of activation of T cells transmembrane domain, these factors combine to yield enrichment of the peptide at Lo/Ld interfaces. These results define some of the general principles governing protein partitioning between coexisting membrane domains and potentially explain previous disparities among experiments and simulations across model systems.  相似文献   

7.
The HA of influenza virus is a paradigm for a transmembrane protein thought to be associated with membrane-rafts, liquid-ordered like nanodomains of the plasma membrane enriched in cholesterol, glycosphingolipids, and saturated phospholipids. Due to their submicron size in cells, rafts can not be visualized directly and raft-association of HA was hitherto analyzed by indirect methods. In this study, we have used GUVs and GPMVs, showing liquid disordered and liquid ordered domains, to directly visualize partition of HA by fluorescence microscopy. We show that HA is exclusively (GUVs) or predominantly (GPMVs) present in the liquid disordered domain, regardless of whether authentic HA or domains containing its raft targeting signals were reconstituted into model membranes. The preferential partition of HA into ld domains and the difference between lo partition in GUV and GPMV are discussed with respect to differences in packaging of lipids in membranes of model systems and living cells suggesting that physical properties of lipid domains in biological membranes are tightly regulated by protein-lipid interactions.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) between matched carbocyanine lipid analogs in the plasma membrane outer leaflet of RBL mast cells was used to investigate lateral distributions of lipids and to develop a general method for quantitative measurements of lipid heterogeneity in live cell membranes. FRET measured as fluorescence quenching of long-chain donor probes such as DiO-C18 is greater with long-chain, saturated acceptor probes such as DiI-C16 than with unsaturated or shorter-chain acceptors with the same chromophoric headgroup compared at identical concentrations. FRET measurements between these lipid probes in model membranes support the conclusion that differential donor quenching is not caused by nonideal mixing or spectroscopic differences. Sucrose gradient analysis of plasma membrane-labeled, Triton X-100-lysed cells shows that proximity measured by FRET correlates with the extent of lipid probe partitioning into detergent-resistant membranes. FRET between DiO-C16 and DiI-C16 is sensitive to cholesterol depletion and disruption of liquid order (Lo) by short-chain ceramides, and it is enhanced by cross linking of Lo-associated proteins. Consistent results are obtained when homo-FRET is measured by decreased fluorescence anisotropy of DiI-C16. These results support the existence of nanometer-scale Lo/liquid disorder heterogeneity of lipids in the outer leaflet of the plasma membrane in live cells.  相似文献   

9.
Liu AP  Fletcher DA 《Biophysical journal》2006,91(11):4064-4070
The ability of cells to mount localized responses to external or internal stimuli is critically dependent on organization of lipids and proteins in the plasma membrane. Involvement of the actin cytoskeleton in membrane organization has been documented, but an active role for actin networks that directly links internal organization of the cytoskeleton with membrane organization has not yet been identified. Here we show that branched actin networks formed on model lipid membranes enriched with the lipid second messenger PIP(2) trigger both temporal and spatial rearrangement of membrane components. Using giant unilamellar vesicles able to separate into two coexisting liquid phases, we demonstrate that polymerization of dendritic actin networks on the membrane induces phase separation of initially homogenous vesicles. This switch-like behavior depends only on the PIP(2)-N-WASP link between the membrane and actin network, and we find that the presence of a preexisting actin network spatially biases the location of phase separation. These results show that dynamic, membrane-bound actin networks alone can control when and where membrane domains form and may actively contribute to membrane organization during cell signaling.  相似文献   

10.
The phase behavior of membrane lipids is known to influence the organization and function of many integral proteins. Giant unilamellar vesicles (GUVs) provide a very useful model system in which to examine the details of lipid phase separation using fluorescence imaging. The visualization of domains in GUVs of binary and ternary lipid mixtures requires fluorescent probes with partitioning preference for one of the phases present. To avoid possible pitfalls when interpreting the phase behavior of these lipid mixtures, sufficiently thorough characterization of the fluorescent probes used in these studies is needed. It is now evident that fluorescent probes display different partitioning preferences between lipid phases, depending on the specific lipid host system. Here, we demonstrate the benefit of using a panel of fluorescent probes and confocal fluorescence microscopy to examine phase separation in GUVs of binary mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Patch and fibril gel phase domains were found to co-exist with liquid disordered (l(d)) domains on the surface of GUVs composed of 40:60 mol% DOPC/DPPC, over a wide range of temperatures (14-25°C). The fluorescent lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl (NBD-DPPE), proved to be the most effective probe for visualization of fibril domains. In the presence of Lissamine(TM) rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Rh-DPPE) we were unable to detect fibril domains. This fluorophore also affected the partitioning behavior of other fluorescent probes. Overall, we show that the selection of different fluorescent probes as lipid phase reporters can result in very different interpretation of the phase behavior of DOPC/DPPC mixtures.  相似文献   

11.
Heczková B  Slotte JP 《FEBS letters》2006,580(10):2471-2476
1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (OMPC, edelfosine) and 1-hexadecylphosphocholine (HePC, miltefosine) represent two groups of synthetic ether lipid analogues with anti-tumor activity. Because of their hydrophobic nature, they may become incorporated into plasma membranes of cells, and it has been argued that they may act via association with lipid rafts. With the quenching of steady-state fluorescence of probes preferentially partitioning into sterol-rich ordered domains (cholestatrienol and trans-parinaric acid), we showed that OMPC and HePC by themselves did not form sterol-rich domains in fluid model membranes, in contrast to the two chain ether lipid 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine. Nevertheless, all three ether lipids significantly stabilized palmitoyl-sphingomyelin/cholesterol-rich domains against temperature induced melting. In conclusion, this study shows that anti-tumor ether lipids are likely to affect the properties of cholesterol-sphingomyelin domains (i.e., lipid rafts) when incorporated into cell membranes.  相似文献   

12.
Biological membranes are heterogeneous assemblies of lipids, proteins, and cholesterol that are organized as asymmetric bimolecular leaflets of lipids with embedded proteins. Modulated by the concentration of cholesterol lipids and proteins may segregate into two or more liquid phases with different physical properties that can coexist in the same membrane. In this review, we summarize recent advances on how this situation can be recreated in a supported bilayer format and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet by lipid compositions that are typical for the outer leaflet of mammalian plasma membranes. Proteins are shown to differentially target such induced inner leaflet domains.  相似文献   

13.
Biological membranes are heterogeneous assemblies of lipids, proteins, and cholesterol that are organized as asymmetric bimolecular leaflets of lipids with embedded proteins. Modulated by the concentration of cholesterol lipids and proteins may segregate into two or more liquid phases with different physical properties that can coexist in the same membrane. In this review, we summarize recent advances on how this situation can be recreated in a supported bilayer format and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet by lipid compositions that are typical for the outer leaflet of mammalian plasma membranes. Proteins are shown to differentially target such induced inner leaflet domains.  相似文献   

14.
《Biophysical journal》2020,118(6):1292-1300
Giant plasma membrane vesicles (GPMVs) are a widely used experimental platform for biochemical and biophysical analysis of isolated mammalian plasma membranes (PMs). A core advantage of these vesicles is that they maintain the native lipid and protein diversity of the PM while affording the experimental flexibility of synthetic giant vesicles. In addition to fundamental investigations of PM structure and composition, GPMVs have been used to evaluate the binding of proteins and small molecules to cell-derived membranes and the permeation of drug-like molecules through them. An important assumption of such experiments is that GPMVs are sealed, i.e., that permeation occurs by diffusion through the hydrophobic core rather than through hydrophilic pores. Here, we demonstrate that this assumption is often incorrect. We find that most GPMVs isolated using standard preparations are passively permeable to various hydrophilic solutes as large as 40 kDa, in contrast to synthetic giant unilamellar vesicles. We attribute this leakiness to stable, relatively large, and heterogeneous pores formed by rupture of vesicles from cells. Finally, we identify preparation conditions that minimize poration and allow evaluation of sealed GPMVs. These unexpected observations of GPMV poration are important for interpreting experiments utilizing GPMVs as PM models, particularly for drug permeation and membrane asymmetry.  相似文献   

15.
16.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

17.
Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.  相似文献   

18.
Lateral compositional and physicochemical heterogeneity is a ubiquitous feature of cellular membranes on various length scales, from molecular assemblies to micrometric domains. Segregated lipid domains of increased local order, referred to as rafts, are believed to be prominent features in eukaryotic plasma membranes; however, their exact nature (i.e. size, lifetime, composition, homogeneity) in live cells remains difficult to define. Here we present evidence that both synthetic and natural plasma membranes assume a wide range of lipid packing states with varying levels of molecular order. These states may be adapted and specifically tuned by cells during active cellular processes, as we show for stimulated insulin secretion. Most importantly, these states regulate both the partitioning of molecules between coexisting domains and the bioactivity of their constituent molecules, which we demonstrate for the ligand binding activity of the glycosphingolipid receptor GM1. These results confirm the complexity and flexibility of lipid-mediated membrane organization and reveal mechanisms by which this flexibility could be functionalized by cells.  相似文献   

19.
Monomolecular layers of whole myelin membrane can be formed at the air-water interface from vesicles or from solvent solution of myelin. The films appear microheterogeneous as seen by epifluorescence and Brewster angle microscopy. The pattern consists mainly of two coexisting liquid phases over the whole compression isotherm. The liquid nature of the phases is apparent from the fluorescent probe behavior, domain mobility, deformability and boundary relaxation due to the line tension of the surface domains. The monolayers were transferred to alkylated glass and fluorescently labeled against myelin components. The immunolabeling of two major proteins of myelin (myelin basic protein, proteolipid-DM20) and of 2',3'-cyclic nucleotide 3'-phosphodiesterase shows colocalization with probes partitioning preferentially in liquid-expanded lipid domains also containing ganglioside G(M1). A different phase showing an enrichment in cholesterol, galactocerebroside and phosphatidylserine markers is also found. The distribution of components is qualitatively independent of the lateral surface pressure and is generally constituted by one phase enriched in charged components in an expanded state coexisting with another phase enriched in non-charged constituents of lower compressibility. The domain immiscibility provides a physical basis for the microheterogeneity found in this membrane model system.  相似文献   

20.
Regions of contact between cells are frequently enriched in or depleted of certain protein or lipid species. Here, we explore a possible physical basis that could contribute to this membrane heterogeneity using a model system of a giant vesicle tethered to a planar supported bilayer. Vesicles contain coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases at low temperatures and are tethered using trace quantities of adhesion molecules that preferentially partition into one liquid phase. We find that the Ld marker DiI-C12 is enriched or depleted in the adhered region when adhesion molecules partition into Ld or Lo phases, respectively. Remarkably, adhesion stabilizes an extended zone enriched or depleted of DiI-C12 even at temperatures >15°C above the miscibility phase transition when membranes have compositions that are in close proximity to a critical point. A stable adhesion zone is also observed in plasma membrane vesicles isolated from living RBL-2H3 cells, and probe partitioning at 37°C is diminished in vesicles isolated from cells with altered cholesterol levels. Probe partitioning is in good quantitative agreement with predictions of the two-dimensional Ising model with a weak applied field for both types of model membranes. These studies experimentally demonstrate that large and stable domain structure can be mediated by lipids in single-phase membranes with supercritical fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号